Abstract

This paper proposes an analytical method for the dynamic thermal simulation of energy piles with a short time resolution (e.g., tens of minutes) as an alternative to numerical approaches, which require relevant computational resources. The discussion is tailored to the implementation of analytical models in dynamic energy simulation software for buildings and HVAC systems. The main modeling challenges consist of accounting for the pile thermal capacity, configuration of pipes, and time-varying inlet temperature and flow rate values. The heat transfer process occurs in three characteristic periods, each of them characterized by a 2D or 3D geometry. The first period concerns the evolution of the fluid temperature and heat transfer over the length of the pipes, the second period concerns the thermal diffusion within the heat capacity of the foundation, and the third period is driven by pile geometry and ground source characteristics. For short time resolution analyses, we proposed a general linear set of equations based on the ε-NTU theory for heat exchangers, the infinite composite-medium line source solution, and the finite line source for the ground source. The proposed method is compared with a full transient 3D numerical simulation. The maximum deviation in terms of return temperature to the heat pump is 0.2 K. The general dimensionless form, the short time resolution, and the limited computational time makes the method suitable for building simulation software and optimization codes for thermal analysis and energy pile design.

References

1.
Fadejev
,
J.
,
Simson
,
R.
,
Kurnitski
,
J.
, and
Haghighat
,
F.
,
2017
, “
A Review on Energy Piles Design, Sizing and Modelling
,”
Energy
,
122
, pp.
390
407
.10.1016/j.energy.2017.01.097
2.
Mohamad
,
Z.
,
Fardoun
,
F.
, and
Meftah
,
F.
,
2021
, “
A Review on Energy Piles Design, Evaluation, and Optimization
,”
J. Clean. Prod.
,
292
, p.
125802
.10.1016/j.jclepro.2021.125802
3.
Loveridge
,
F.
,
McCartney
,
J. S.
,
Narsilio
,
G. A.
, and
Sanchez
,
M.
,
2020
, “
Energy Geostructures: A Review of Analysis Approaches, in Situ Testing and Model Scale Experiments
,”
Geomech. Energy Environ.
,
22
, p.
100173
.10.1016/j.gete.2019.100173
4.
Amatya
,
B. L.
,
Soga
,
K.
,
Bourne-Webb
,
P. J.
,
Amis
,
T.
, and
Laloui
,
L.
,
2012
, “
Thermo-Mechanical Behaviour of Energy Piles
,”
Géotechnique
,
62
(
6
), pp.
503
519
.10.1680/geot.10.P.116
5.
Cekerevac
,
C.
, and
Laloui
,
L.
,
2004
, “
Experimental Study of Thermal Effects on the Mechanical Behaviour of a Clay
,”
Int. J. Numer. Anal. Methods Geomech.
,
28
(
3
), pp.
209
228
.10.1002/nag.332
6.
Eslami
,
H.
,
Rosin-Paumier
,
S.
,
Abdallah
,
A.
, and
Masrouri
,
F.
,
2017
, “
Pressuremeter Test Parameters of a Compacted Illitic Soil Under Thermal Cycling
,”
Acta Geotech.
,
12
(
5
), pp.
1105
1118
.10.1007/s11440-017-0552-2
7.
Rotta Loria
,
A. F.
, and
Laloui
,
L.
,
2016
, “
The Interaction Factor Method for Energy Pile Groups
,”
Comput Geotech
,
80
, pp.
121
137
.10.1016/j.compgeo.2016.07.002
8.
Dupray
,
F.
,
Laloui
,
L.
, and
Kazangba
,
A.
,
2014
, “
Numerical Analysis of Seasonal Heat Storage in an Energy Pile Foundation
,”
Comput. Geotech.
,
55
, pp.
67
77
.10.1016/j.compgeo.2013.08.004
9.
Batini
,
N.
,
Rotta Loria
,
A. F.
,
Conti
,
P.
,
Testi
,
D.
,
Grassi
,
W.
, and
Laloui
,
L.
,
2015
, “
Energy and Geotechnical Behaviour of Energy Piles for Different Design Solutions
,”
Appl. Therm. Eng.
,
86
, pp.
199
213
.10.1016/j.applthermaleng.2015.04.050
10.
Loveridge
,
F.
, and
Powrie
,
W.
,
2014
, “
G-Functions for Multiple Interacting Pile Heat Exchangers
,”
Energy
,
64
, pp.
747
757
.10.1016/j.energy.2013.11.014
11.
Zarrella
,
A.
,
Emmi
,
G.
,
Zecchin
,
R.
, and
De Carli
,
M.
,
2017
, “
An Appropriate Use of the Thermal Response Test for the Design of Energy Foundation Piles With U-Tube Circuits
,”
Energy Build
,
134
, pp.
259
270
.10.1016/j.enbuild.2016.10.053
12.
Bidarmaghz
,
A.
,
Narsilio
,
G. A.
,
Johnston
,
I. W.
, and
Colls
,
S.
,
2016
, “
The Importance of Surface Air Temperature Fluctuations on Long-Term Performance of Vertical Ground Heat Exchangers
,”
Geomech. Energy Environ.
,
6
, pp.
35
44
.10.1016/j.gete.2016.02.003
13.
Priarone
,
A.
, and
Fossa
,
M.
,
2016
, “
Temperature Response Factors at Different Boundary Conditions for Modelling the Single Borehole Heat Exchanger
,”
Appl. Therm. Eng.
,
103
, pp.
934
944
.10.1016/j.applthermaleng.2016.04.038
14.
Bandos
,
T. V.
,
Campos-Celador
,
Á.
,
López-González
,
L. M.
, and
Sala-Lizarraga
,
J. M.
,
2014
, “
Finite Cylinder-Source Model for Energy Pile Heat Exchangers: Effects of Thermal Storage and Vertical Temperature Variations
,”
Energy
,
78
, pp.
639
648
.10.1016/j.energy.2014.10.053
15.
Conti
,
P.
,
2016
, “
Dimensionless Maps for the Validity of Analytical Ground Heat Transfer Models for GSHP Applications
,”
Energies
,
9
(
11
), p.
890
.10.3390/en9110890
16.
Conti
,
P.
,
Testi
,
D.
, and
Grassi
,
W.
,
2017
, “
A Brief Compendium of Correlations and Analytical Formulae for the Thermal Field Generated by a Heat Source Embedded in Porous and Purely-Conductive Media
,”
J. Phys. Conf. Ser.
,
923
, p.
012056
.10.1088/1742-6596/923/1/012056
17.
Loveridge
,
F.
, and
Powrie
,
W.
,
2013
, “
Temperature Response Functions (G-Functions) for Single Pile Heat Exchangers
,”
Energy
,
57
, pp.
554
564
.10.1016/j.energy.2013.04.060
18.
Rui
,
Y.
,
Garber
,
D.
, and
Yin
,
M.
,
2018
, “
Modelling Ground Source Heat Pump System by an Integrated Simulation Programme
,”
Appl. Therm. Eng.
,
134
, pp.
450
459
.10.1016/j.applthermaleng.2018.01.123
19.
Fadejev
,
J.
, and
Kurnitski
,
J.
,
2015
, “
Geothermal Energy Piles and Boreholes Design With Heat Pump in a Whole Building Simulation Software
,”
Energy Build
,
106
, pp.
23
34
.10.1016/j.enbuild.2015.06.014
20.
Grassi
,
W.
,
Conti
,
P.
,
Schito
,
E.
, and
Testi
,
D.
,
2015
, “
On Sustainable and Efficient Design of Ground-Source Heat Pump Systems
,”
J. Phys. Conf. Ser.
,
655
, p.
012003
.10.1088/1742-6596/655/1/012003
21.
Casarosa
,
C.
,
Conti
,
P.
,
Franco
,
A.
,
Grassi
,
W.
, and
Testi
,
D.
,
2014
, “
Analysis of Thermodynamic Losses in Ground Source Heat Pumps and Their Influence on Overall System Performance
,”
J. Phys. Conf. Ser.
,
547
, p.
012006
.10.1088/1742-6596/547/1/012006
22.
Hellström
,
G.
,
1986
,
Duct Ground Heat Storage Model Manual for Computer Code
,
Department of Mathematical Physics, University of Lund
,
Lund, S
.
23.
Zhang
,
L.
,
Huang
,
G.
,
Zhang
,
Q.
, and
Wang
,
J.
,
2018
, “
An Hourly Simulation Method for the Energy Performance of an Office Building Served by a Ground-Coupled Heat Pump System
,”
Renew. Energy
,
126
, pp.
495
508
.10.1016/j.renene.2018.03.082
24.
Jahanbin
,
A.
,
Naldi
,
C.
, and
Zanchini
,
E.
,
2020
, “
Relation Between Mean Fluid Temperature and Outlet Temperature for Single U-Tube Boreholes
,”
Energies
,
13
(
4
), p.
828
.10.3390/en13040828
25.
Li
,
M.
,
Zhou
,
C.
, and
Rao
,
Z.
,
2019
, “
Hourly 50-Year Simulations of Ground-Coupled Heat Pumps Using High-Resolution Analytical Models
,”
Energy Convers. Manag.
,
193
, pp.
15
24
.10.1016/j.enconman.2019.04.051
26.
Li
,
M.
,
Li
,
P.
,
Chan
,
V.
, and
Lai
,
A. C. K.
,
2014
, “
Full-Scale Temperature Response Function (G-Function) for Heat Transfer by Borehole Ground Heat Exchangers (GHEs) From Sub-Hour to Decades
,”
Appl. Energy
,
136
, pp.
197
205
.10.1016/j.apenergy.2014.09.013
27.
Conti
,
P.
,
Testi
,
D.
, and
Grassi
,
W.
,
2016
, “
Revised Heat Transfer Modeling of double-U Vertical Ground-Coupled Heat Exchangers
,”
Appl. Therm. Eng.
,
106
, pp.
1257
1267
.10.1016/j.applthermaleng.2016.06.097
28.
Li
,
M.
, and
Lai
,
A. C. K.
,
2015
, “
Review of Analytical Models for Heat Transfer by Vertical Ground Heat Exchangers (GHEs): A Perspective of Time and Space Scales
,”
Appl. Energy
,
151
, pp.
178
191
.10.1016/j.apenergy.2015.04.070
29.
Conti
,
P.
,
Schito
,
E.
, and
Testi
,
D.
,
2019
, “
Thermal Characterization of Energy Pile Dynamics
,”
Energy Geotechnics SEG 2018
,
Springer
,
Cham, Switzerland
, pp.
123
131
.
A.
Ferrari
, and
L.
Laloui
, eds., Springer Series in Geomechanics and Geoengineering.
30.
Eskilson
,
P.
,
1987
, “
Thermal Analysis of Heat Extraction Boreholes
,” Ph.D. dissertation,
Department of Mathematical Physics, University of Lund
,
Lund, S
.
31.
Ingersoll
,
L. R.
,
Zobel
,
O. J.
, and
Ingersoll
,
A. C.
,
1954
,
Heat Conduction With Engineering, Geological and Other Applications
,
McGraw-Hill
,
New York
.
32.
Wang
,
D.
,
Lin
,
L.
, and
Aiqiang
,
P.
,
2017
, “
Investigating the Impact of Thermo-Physical Property Difference Between Soil and Pile on the Thermal Performance of Energy Piles
,”
Procedia Eng.
,
205
, pp.
3199
3205
.10.1016/j.proeng.2017.10.269
33.
Li
,
M.
, and
Lai
,
A. C. K.
,
2012
, “
New Temperature Response Functions (G Functions) for Pile and Borehole Ground Heat Exchangers Based on Composite-Medium Line-Source Theory
,”
Energy
,
38
(
1
), pp.
255
263
.10.1016/j.energy.2011.12.004
34.
Cimmino
,
M.
,
2016
, “
Fluid and Borehole Wall Temperature Profiles in Vertical Geothermal Boreholes With Multiple U-Tubes
,”
Renew. Energy
,
96
, pp.
137
147
.10.1016/j.renene.2016.04.067
35.
Molina-Giraldo
,
N.
,
Blum
,
P.
,
Zhu
,
K.
,
Bayer
,
P.
, and
Fang
,
Z.
,
2011
, “
A Moving Finite Line Source Model to Simulate Borehole Heat Exchangers With Groundwater Advection
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2506
2513
.10.1016/j.ijthermalsci.2011.06.012
36.
Conti
,
P.
,
Testi
,
D.
, and
Grassi
,
W.
,
2018
, “
Transient Forced Convection From an Infinite Cylindrical Heat Source in a Saturated Darcian Porous Medium
,”
Int. J. Heat Mass Transf.
,
117
, pp.
154
166
.10.1016/j.ijheatmasstransfer.2017.10.012
37.
Zhou
,
Y.
,
Xu
,
C.
,
Sego
,
D.
, and
Zhang
,
D.
,
2019
, “
Analytical Solution for Solid Cylindrical Heat Source Model With Convective Boundary Condition
,”
ASME Journal Heat Transfer-Trans.
,
141
(
12
), p.
121701
.10.1115/1.4044824
38.
Wei
,
J.
,
Wang
,
L.
,
Jia
,
L.
, and
Cai
,
W.
,
2016
, “
A New Method for Calculation of Short Time-Step g-Functions of Vertical Ground Heat Exchangers
,”
Appl. Therm. Eng.
,
99
, pp.
776
783
.10.1016/j.applthermaleng.2016.01.105
39.
Li
,
M.
, and
Lai
,
A. C. K.
,
2013
, “
Analytical Model for Short-Time Responses of Ground Heat Exchangers With U-Shaped Tubes: Model Development and Validation
,”
Appl. Energy
,
104
, pp.
510
516
.10.1016/j.apenergy.2012.10.057
40.
COMSOL Multiphysics®
v. 5.2. www.comsol.com.
COMSOL AB
,
Stockholm, Sweden
.
41.
Marcotte
,
D.
, and
Pasquier
,
P.
,
2008
, “
Fast Fluid and Ground Temperature Computation for Geothermal Ground-Loop Heat Exchanger Systems
,”
Geothermics
,
37
(
6
), pp.
651
665
.10.1016/j.geothermics.2008.08.003
42.
Conti
,
P.
,
Bartoli
,
C.
,
Franco
,
A.
, and
Testi
,
D.
,
2020
, “
Experimental Analysis of an Air Heat Pump for Heating Service Using a “Hardware-in-the-Loop” System
,”
Energies
,
13
(
17
), p.
4498
.10.3390/en13174498
43.
Kelvin
,
T. W.
,
1882
,
Mathematical and Physical Papers
,
Cambridge University Press
,
London
.
44.
Li
,
M.
, and
Lai
,
A. C. K.
,
2012
, “
Heat-Source Solutions to Heat Conduction in Anisotropic Media With Application to Pile and Borehole Ground Heat Exchangers
,”
Appl. Energy
,
96
, pp.
451
458
.10.1016/j.apenergy.2012.02.084
45.
Claesson
,
J.
, and
Javed
,
S.
,
2011
, “
An Analytical Method to Calculate Borehole Fluid Temperatures for Time-Scales From Minutes to Decades
,” 2011 ASHRAE Annual Conference, Montreal, QC, June 25–29, 88319,
ASHRAE Trans.
,
117
(
2
), pp.
279
288
.https://www.researchgate.net/publication/268095275_An_Analytical_Method_to_Calculate_Borehole_Fluid_Temperatures_for_Timescales_from_Minutes_to_Decades_ML-11-C034
You do not currently have access to this content.