Abstract

The impact of measurement uncertainty on Nusselt number correlations for supercritical CO2 is investigated. Selection of appropriate reference quantities for these correlations, such as thermal conductivity, appears to have a large effect on accurately predicting heat transfer rates. Supercritical CO2 work heavily depends on real fluid property data, which show that fluid properties have very large gradients with respect to temperature and pressure near the critical point. The sharp gradients imply heat transfer predictions are highly sensitive to the accuracy of temperature and pressure experimental measurements in this region. Root sum of squares uncertainties at various property values indicate predictably large (on the order of 1000%) uncertainties in calculated Reynolds, Prandtl, and Nusselt numbers near the critical point. Interestingly, uncertainties remain several times the calculated value for operating pressures between 7.5 and 8.5 MPa, which are common in the experimental literature—highlighting a need for careful application of correlations near the pseudocritical line and the benefits of presenting dimensional data in the literature.

References

1.
Fronk
,
B. M.
, and
Rattner
,
A. S.
,
2016
, “
High-Flux Thermal Management With Supercritical Fluids
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
12
), p.
124501
.10.1115/1.4034053
2.
Guo
,
J.
, and
Huai
,
X.
,
2017
, “
Performance Analysis of Printed Circuit Heat Exchanger for Supercritical Carbon Dioxide
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
6
), p.
061801
.10.1115/1.4035603
3.
Yang
,
C.-Y.
, and
Liao
,
K.-C.
,
2017
, “
Effect of Experimental Method on the Heat Transfer Performance of Supercritical Carbon Dioxide in Microchannel
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
11
), p.
112404
.10.1115/1.4036694
4.
Carraro
,
G.
,
Danieli
,
P.
,
Lazzaretto
,
A.
, and
Boatto
,
T.
,
2021
, “
A Common Thread in the Evolution of the Configurations of Supercritical CO2 Power Systems for Waste Heat Recovery
,”
Energy Convers. Manage.
,
237
, p.
114031
.10.1016/j.enconman.2021.114031
5.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.10.1016/j.net.2015.06.009
6.
Avadhanula
,
V. K.
, and
Held
,
T. J.
,
2017
, “
Transient Modeling of a Supercritical CO2 Power Cycle and Comparison With Test Data
,”
ASME Paper No. GT2017-63279
.10.1115/GT2017-63279
7.
Ameli
,
A.
,
Afzalifar
,
A.
,
Turunen-Saaresti
,
T.
, and
Backman
,
J.
,
2018
, “
Effects of Real Gas Model Accuracy and Operating Conditions on Supercritical CO2 Compressor Performance and Flow Field
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062603
.10.1115/1.4038552
8.
Yang
,
V.
,
2000
, “
Modeling of Supercritical Vaporization, Mixing, and Combustion Processes in Liquid-Fueled Propulsion Systems
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
925
942
.10.1016/S0082-0784(00)80299-4
9.
Banuti
,
D.
,
2015
, “
Crossing the Wisdom-Line—Supercritical Pseudo-Boiling
,”
J. Supercrit. Fluids
,
98
, pp.
12
16
.10.1016/j.supflu.2014.12.019
10.
Dittus
,
F.
, and
Boelter
,
L.
,
1930
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Univ. California Publ. Eng.
,
2
, pp.
443
461
.10.1016/0735-1933(85)90003-X
11.
Gnielinski
,
V.
,
1976
, “
NewEquations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
12.
Huang
,
D.
,
Wu
,
Z.
,
Sunden
,
B.
, and
Li
,
W.
,
2016
, “
A Brief Review on Convection Heat Transfer of Fluids at Supercritical Pressures in Tubes and the Recent Progress
,”
Appl. Energy
,
162
, pp.
494
505
.10.1016/j.apenergy.2015.10.080
13.
Sullivan
,
N. P.
,
Chao
,
Y.
,
Ricklick
,
M. A.
, and
Boetcher
,
S. K. S.
,
2021
, “
Heat Transfer Enhancement Optimization in Supercritical CO2 With Reduced-Order Model
,”
AIAA Paper No. 2021-3716
.10.2514/6.2021-3716
14.
Dang
,
C.
, and
Hihara
,
E.
,
2004
, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide. part 1. experimental Measurement
,”
Int. J. Refrig.
,
27
(
7
), pp.
736
747
.10.1016/j.ijrefrig.2004.04.018
15.
Filonenko
,
G.
,
1954
, “
Hydraulic Resistance in Pipes
,”
Teploenergetika
,
1
(
4
), pp.
40
44
.
16.
Chao
,
Y.
,
Lopes
,
N. C.
,
Ricklick
,
M.
, and
Boetcher
,
S. K. S.
,
2021
, “
Effect of the Heat Transfer Coefficient Reference Temperatures on Validating Numerical Models of Supercritical CO2
,”
ASME J. Verif., Valid. Uncert. Quantif.
,
6
(
4
), p.
041001
.10.1115/1.4051637
17.
Locke
,
J. M.
, and
Landrum
,
D. B.
,
2005
, “
Uncertainty Analysis of Heat Transfer to Supercritical Hydrogen in Cooling Channels
,”
AIAA Paper No. 2005–4303
.10.2514/6.2005-4303
18.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
19.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
20.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 k at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
You do not currently have access to this content.