Abstract

This work studies the possible effects of varying depths of cavity on bubbling features and the associated heat transfer rates in nucleate pool boiling regime. A single vapor bubble has been generated on a substrate with a cylindrical cavity at its center that acts as the nucleation site. Experiments have been conducted for three cavity depths (250, 500, and 1000 μm), while keeping its throat diameter constant at 200 μm. With the bulk fluid maintained under saturated conditions, for each cavity depth, surface superheat level has been varied in the range of ΔTsuperheat = 8, 10 and 12 °C. A gradient-based visualization technique, coupled with a high speed camera, has been employed to simultaneously map the changes in thermal gradients during the formation of the vapor bubble as well as bubble dynamic parameters. The image sequence obtained has been qualitatively and quantitatively analyzed to elucidate the dependence of bubbling features and various heat transfer processes on cavity depth. With an increase in the depth of cavity, the net effect of reduction in the available thermal energy due to the increased convection effects and significant depletion of superheated layer are identified as the dominant heat transfer processes that influence the bubbling features. Furthermore, based on the statistics of bubble departure characteristics, the cavity with higher depth (1000 μm) showed a much stable bubble formation with minimal variation in the bubble departure frequency as compared to the bubbling features from a cavity with smaller depth (250 μm). Evaporative heat transfer process has been identified as the primary cause for increased inconsistency of bubbling features at high superheat conditions for experiments performed for low cavity depths.

References

1.
Hutter
,
C.
,
Kenning
,
D. B. R.
,
Sefiane
,
K.
,
Karayiannis
,
T. G.
,
Lin
,
H.
,
Cummins
,
G.
, and
Walton
,
A. J.
,
2010
, “
Experimental Pool Boiling Investigations of FC-72 on Silicon With Artificial Cavities and Integrated Temperature Microsensors
,”
Exp. Therm. Fluid Sci
,.,
34
(
4
), pp.
422
433
.10.1016/j.expthermflusci.2009.03.010
2.
Deng
,
D.
,
Feng
,
J.
,
Huang
,
Q.
,
Tang
,
Y.
, and
Lian
,
Y.
,
2016
, “
Pool Boiling Heat Transfer of Porous Structures With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
,
99
, pp.
556
568
.10.1016/j.ijheatmasstransfer.2016.04.015
3.
Liang
,
G.
, and
Mudawar
,
I.
,
2019
, “
Review of Pool Boiling Enhancement by Surface Modification
,”
Int. J. Heat Mass Transfer
,
128
, pp.
892
933
.10.1016/j.ijheatmasstransfer.2018.09.026
4.
Mohanty
,
R. L.
, and
Das
,
M. K.
,
2017
, “
A Critical Review on Bubble Dynamics Parameters Influencing Boiling Heat Transfer
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
466
494
.10.1016/j.rser.2017.04.092
5.
Bankoff
,
S. G.
,
1958
, “
Entrapment of Gas in the Spreading of a Liquid Over a Rough Surface
,”
AIChE J.
,
4
(
1
), pp.
24
26
.10.1002/aic.690040105
6.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
213
.10.1115/1.3684339
7.
Han
,
C. Y.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling-Part I; Bubble Initiation, Growth and Departure
,”
Int. J. Heat Mass Transfer
,
8
(
6
), pp.
887
904
.10.1016/0017-9310(65)90073-6
8.
Han
,
C. Y.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling-Part II—The Heat Flux-Temperature Difference Relation
,”
Int. J. Heat Mass Transfer
,
8
(
6
), pp.
905
914
.10.1016/0017-9310(65)90074-8
9.
Shoji
,
M.
, and
Takagi
,
Y.
,
2001
, “
Bubbling Features From a Single Artificial Cavity
,”
Int. J. Heat Mass Transfer
,
44
(
14
), pp.
2763
2776
.10.1016/S0017-9310(00)00300-8
10.
Kandlikar
,
S. G.
,
Shoji
,
M.
, and
Dhir
,
V. K.
,
1992
,
Handbook of Phase Change: Boiling and Condensation
,
Taylor & Francis
,
Philadelphia, PA
.
11.
Shoji
,
M.
,
2004
, “
Studies of Boiling Chaos: A Review
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1105
1128
.10.1016/j.ijheatmasstransfer.2003.09.024
12.
Chatpun
,
S.
,
Watanabe
,
M.
, and
Shoji
,
M.
,
2004
, “
Experimental Study on Characteristics of Nucleate Pool Boiling by the Effects of Cavity Arrangement
,”
Exp. Therm. Fluid Sci.
,
29
(
1
), pp.
33
40
.10.1016/j.expthermflusci.2004.01.007
13.
Mosdorf
,
R.
, and
Shoji
,
M.
,
2004
, “
Chaos in Nucleate Boiling-Nonlinear Analysis and Modelling
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1515
1524
.10.1016/j.ijheatmasstransfer.2003.09.022
14.
Zhang
,
L.
, and
Shoji
,
M.
,
2003
, “
Nucleation Site Interaction in Pool Boiling on the Artificial Surface
,”
Int. J. Heat Mass Transfer
,
46
(
3
), pp.
513
522
.10.1016/S0017-9310(02)00291-0
15.
Qi
,
Y.
, and
Klausner
,
J. F.
,
2005
, “
Heterogeneous Nucleation With Artificial Cavities
,”
ASME J. Heat Transfer
,
127
(
11
), pp.
1189
1196
.10.1115/1.2039111
16.
Bon
,
B.
,
Guan
,
C. K.
, and
Klausner
,
J. F.
,
2011
, “
Heterogeneous Nucleation on Ultra Smooth Surfaces
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
746
752
.10.1016/j.expthermflusci.2010.05.003
17.
Bon
,
B.
,
Klausner
,
J.
, and
McKenna
,
E.
,
2013
, “
An Investigation of Pool Boiling Heat Transfer on Single Crystal Surfaces and a Dense Array of Cylindrical Cavities
,”
ASME J. Heat Transfer
,
135
(
12
), p.
121501
.10.1115/1.4024652
18.
Mu
,
Y. T.
,
Chen
,
L.
,
He
,
Y. L.
,
Kang
,
Q. J.
, and
Tao
,
W. Q.
,
2017
, “
Nucleate Boiling Performance Evaluation of Cavities at Mesoscale Level
,”
Int. J. Heat Mass Transfer
,
106
, pp.
708
719
.10.1016/j.ijheatmasstransfer.2016.09.058
19.
Sanna
,
A.
,
Karayiannis
,
T. G.
,
Kenning
,
D. B. R.
,
Hutter
,
C.
,
Sefiane
,
K.
,
Walton
,
A. J.
,
Golobic
,
I.
,
Pavlovic
,
E.
, and
Nelson
,
R. A.
,
2009
, “
Steps Towards the Development of an Experimentally Verified Simulation of Pool Nucleate Boiling on a Silicon Wafer With Artificial Sites
,”
Appl. Therm. Eng.
,
29
(
7
), pp.
1327
1337
.10.1016/j.applthermaleng.2008.05.021
20.
Sanna
,
A.
,
Hutter
,
C.
,
Kenning
,
D. B. R.
,
Karayiannis
,
T. G.
,
Sefiane
,
K.
, and
Nelson
,
R. A.
,
2014
, “
Numerical Investigation of Nucleate Boiling Heat Transfer on Thin Substrates
,”
Int. J. Heat Mass Transfer
,
76
, pp.
45
64
.10.1016/j.ijheatmasstransfer.2014.04.026
21.
Golobic
,
I.
,
Petkovsek
,
J.
,
Gjerkes
,
H.
, and
Kenning
,
D. B. R.
,
2011
, “
Horizontal Chain Coalescence of Bubbles in Saturated Pool Boiling on a Thin Foil
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5517
5526
.10.1016/j.ijheatmasstransfer.2011.07.039
22.
Golobic
,
I.
, and
Matevz
,
Z.
,
2016
, “
Wall-Temperature Distributions of Nucleate Pool Boiling Surfaces vs. Boiling Curves: A New Approach
,”
Int. J. Heat Mass Transfer
,
99
, pp.
541
547
.10.1016/j.ijheatmasstransfer.2016.04.033
23.
Golobic
,
I.
,
Petkovsek
,
J.
,
Baselj
,
M.
,
Papez
,
A.
, and
Kenning
,
D. B. R.
,
2009
, “
Experimental Determination of Transient Wall Temperature Distributions Close to Growing Vapor Bubbles
,”
Heat Mass Transfer
,
45
(
7
), pp.
857
866
.10.1007/s00231-007-0295-y
24.
Gong
,
S.
,
Cheng
,
P.
, and
Quan
,
X.
,
2016
, “
Two-Dimensional Mesoscale Simulations of Saturated Pool Boiling From Rough Surfaces: Part I—Bubble Nucleation in a Single Cavity at Low Superheats
,”
Int. J. Heat Mass Transfer
,
100
, pp.
927
937
.10.1016/j.ijheatmasstransfer.2016.04.085
25.
Chen
,
Y. M.
, and
Mayinger
,
F.
,
1992
, “
Measurement of Heat Transfer at the Phase Interface of Condensing Bubbles
,”
Int. J. Multiph. Flow
,
18
(
6
), pp.
877
890
.10.1016/0301-9322(92)90065-O
26.
Manickam
,
S.
, and
Dhir
,
V.
,
2012
, “
Holographic Interferometric Study of Heat Transfer to a Sliding Vapor Bubble
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
925
940
.10.1016/j.ijheatmasstransfer.2011.10.016
27.
Yabuki
,
T.
,
Hamaguchi
,
T.
, and
Nakabeppu
,
O.
,
2012
, “
Interferometric Measurement of the Liquid-Phase Temperature Field Around an Isolated Boiling Bubble
,”
J. Therm. Sci. Technol.
,
7
(
3
), pp.
463
474
.10.1299/jtst.7.463
28.
Settles
,
G. S.
,
2001
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
,
Springer
,
Berlin
.
29.
Settles
,
G. S.
, and
Hargather
,
M.
,
2017
, “
A Review of Recent Developments in Schlieren and Shadowgraph Techniques
,”
Meas. Sci. Technol.
,
28
(
4
), p.
0420011
.10.1088/1361-6501/aa5748
30.
Srivastava
,
A.
,
Muralidhar
,
K.
, and
Panigrahi
,
P. K.
,
2012
, “
Optical Imaging and Three Dimensional Reconstruction of the Concentration Field Around a Crystal Growing From an Aqueous Solution: A Review
,”
Prog. Crys. Growth Char. Materials
,
58
(
4
), pp.
209
278
.10.1016/j.pcrysgrow.2012.06.001
31.
Narayan
,
S.
,
Srivastava
,
A.
, and
Singh
,
S.
,
2019
, “
Rainbow Schlieren-Based Direct Visualization of Thermal Gradients Around Single Vapor Bubble During Nucleate Boiling Phenomena of Water
,”
Int. J. Multiph. Flow
,
110
, pp.
82
95
.10.1016/j.ijmultiphaseflow.2018.08.012
32.
Narayan
,
S.
,
Srivastava
,
A.
, and
Singh
,
S.
,
2018
, “
Rainbow Schlieren-Based Investigation of Heat Transfer Mechanisms During Isolated Nucleate Pool Boiling Phenomenon: Effect of Superheat Levels
,”
Int. J. Heat Mass Transfer
,
120
, pp.
127
143
.10.1016/j.ijheatmasstransfer.2017.12.005
33.
Narayan
,
S.
,
Singh
,
T.
,
Singh
,
S.
, and
Srivastava
,
A.
,
2019
, “
Experiments on the Effects of Varying Subcooled Conditions on the Dynamics of Single Vapor Bubble and Heat Transfer Rates in Nucleate Pool Boiling Regime
,”
Int. J. Heat Mass Transfer
,
134
, pp.
85
100
.10.1016/j.ijheatmasstransfer.2018.12.139
34.
Sinha
,
G. K.
,
Mahimkar
,
S.
, and
Srivastava
,
A.
,
2019
, “
Schlieren-Based Simultaneous Mapping of Bubble Dynamics and Temperature Gradients in Nucleate Flow Boiling Regime: Effect of Flow Rates and Degree of Subcooling
,”
Exp. Therm. Fluid Sci.
,
104
, pp.
238
257
.10.1016/j.expthermflusci.2019.02.018
35.
Kangude
,
P.
,
Bhatt
,
D.
, and
Srivastava
,
A.
,
2018
, “
Experiments on the Effects of Nanoparticles on Subcooled Nucleate Pool Boiling
,”
Phys. Fluids
,
30
(
5
), pp.
1
13
.10.1063/1.5027295
36.
Lucic
,
A.
,
Emans
,
M.
,
Mayinger
,
F.
, and
Zenger
,
C.
,
2004
, “
Interferometric and Numerical Study of the Temperature Field in the Boundary Layer and Heat Transfer in Subcooled Flow Boiling
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
180
195
.10.1016/j.ijheatfluidflow.2003.11.004
37.
Lucic
,
A.
, and
Mayinger
,
F.
,
2010
, “
Transport Phenomena in Subcooled Flow Boiling
,”
Heat Mass Transfer
,
46
(
10
), pp.
1159
1166
.10.1007/s00231-010-0713-4
38.
Greenberg
,
P. S.
,
Klimek
,
R. B.
, and
Buchele
,
D. R.
,
1995
, “
Quantitative Rainbow Schlieren Deflectometry
,”
Appl. Opt.
,
34
(
19
), pp.
3810
3825
.10.1364/AO.34.003810
39.
Chehouani
,
H.
, and
Fagrich
,
M. E.
,
2013
, “
Adaptation of the Fourier-Hankel Method for Deflection Tomographic Reconstruction of Axisymmetric Field
,”
Appl. Opt.
,
52
(
3
), pp.
439
448
.10.1364/AO.52.000439
40.
Harvey
,
A. H.
,
Gallagher
,
J. S.
, and
Sengers
,
J. M. H. L.
,
1998
, “
Revised Formulation for the Refractive Index of Water and Steam as Function of Wavelength, Temperature and Density
,”
J. Phys. Chem. Ref. Data
,
27
(
4
), pp.
761
775
.10.1063/1.556029
You do not currently have access to this content.