Abstract

Heat transfer to supercritical H2O/CO2 mixtures (24 MPa, 310 to 430 °C, and CO2 mass fractions up to 18.5%), the working fluids of a novel power generation system with coal gasified in supercritical water, was experimentally investigated for typical working conditions of this system. For these conditions, i.e., high mass velocities (above 1200 kg m−2 s−1) and low heat flux (below 300 kW m−2), the convection heat transfer coefficients (HTCs) of supercritical pure fluids usually increase with temperature, peak near the pseudo-critical point, i.e., heat transfer enhancement, and then decrease for higher temperatures. Here, we experimentally demonstrated a new heat transfer enhancement phenomenon for supercritical H2O/CO2 mixtures. A high-temperature and high-pressure apparatus was setup to measure the convection HTCs of the supercritical H2O/CO2 mixtures. Experimental results show that surprisingly two distinct peaks of convection HTCs appear, with one corresponding temperature being the pseudo-critical point of the H2O/CO2 mixture, i.e., the thermophysical property variation induced mechanism, and the other one being the critical miscible point of the mixture, i.e., the dissolution-induced mechanism. These results pave the way to efficient heat transfer devices that use supercritical mixtures as heat transfer fluids.

References

1.
Chen
,
L.
,
Liu
,
D.
,
Zhang
,
H.
, and
Li
,
Q.
,
2020
, “
Theoretical Investigations on Heat Transfer to H2O/CO2 Mixtures in Supercritical Region
,”
Sci. China Technol. Sci.
,
63
(
6
), pp.
1018
1024
.10.1007/s11431-019-1515-3
2.
Zhang
,
H.
,
Wu
,
H.
,
Liu
,
D.
,
Li
,
S.
, and
Li
,
Q.
,
2020
, “
Experimental Investigations on Heat Transfer to H2O/CO2 Mixtures in Supercritical Region
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104706
.10.1016/j.icheatmasstransfer.2020.104706
3.
Li
,
Z.
,
Wu
,
Y.
,
Tang
,
G.
,
Zhang
,
D.
, and
Lu
,
J.
,
2015
, “
Comparison Between Heat Transfer to Supercritical Water in a Smooth Tube and in an Internally Ribbed Tube
,”
Int. J. Heat Mass Transfer
,
84
, pp.
529
541
.10.1016/j.ijheatmasstransfer.2015.01.047
4.
Lei
,
X.
,
Li
,
H.
,
Zhang
,
W.
,
Dinh
,
N. T.
,
Guo
,
Y.
, and
Yu
,
S.
,
2017
, “
Experimental Study on the Difference of Heat Transfer Characteristics Between Vertical and Horizontal Flows of Supercritical Pressure Water
,”
Appl. Therm. Eng.
,
113
, pp.
609
620
.10.1016/j.applthermaleng.2016.11.051
5.
Zhang
,
W.
,
Li
,
H.
,
Zhang
,
Q.
,
Lei
,
X.
, and
Zhang
,
Q.
,
2018
, “
Experimental Investigation on Heat Transfer Deterioration of Supercritical Pressure Water in Vertically-Upward Internally-Ribbed Tubes
,”
Int. J. Heat Mass Transfer
,
120
, pp.
930
943
.10.1016/j.ijheatmasstransfer.2017.12.097
6.
Lei
,
X.
,
Zhang
,
J.
,
Gou
,
L.
,
Zhang
,
Q.
, and
Li
,
H.
,
2019
, “
Experimental Study on Convection Heat Transfer of Supercritical CO2 in Small Upward Channels
,”
Energy
,
176
, pp.
119
130
.10.1016/j.energy.2019.03.109
7.
Li
,
Y.
,
Sun
,
F.
,
Xie
,
G.
,
Sunden
,
B.
, and
Qin
,
J.
,
2019
, “
Numerical Investigation on Flow and Thermal Performance of Supercritical CO2 in Horizontal Cylindrically Concaved Tubes
,”
Appl. Therm. Eng.
,
153
, pp.
655
668
.10.1016/j.applthermaleng.2019.03.034
8.
Fan
,
Y.
, and
Tang
,
G.
,
2018
, “
Numerical Investigation on Heat Transfer of Supercritical Carbon Dioxide in a Vertical Tube Under Circumferentially Non-Uniform Heating
,”
Appl. Therm. Eng.
,
138
, pp.
354
364
.10.1016/j.applthermaleng.2018.04.060
9.
Jackson
,
J. D.
,
2013
, “
Fluid Flow and Convective Heat Transfer to Fluids at Supercritical Pressure
,”
Nucl. Eng. Des.
,
264
, pp.
24
40
.10.1016/j.nucengdes.2012.09.040
10.
Pioro
,
I. L.
,
2019
, “
Current Status of Research on Heat Transfer in Forced Convection of Fluids at Supercritical Pressures
,”
Nucl. Eng. Des.
,
354
, p.
110207
.10.1016/j.nucengdes.2019.110207
11.
Duffey
,
R. B.
, and
Pioro
,
I. L.
,
2005
, “
Experimental Heat Transfer of Supercritical Carbon Dioxide Flowing Inside Channels (Survey)
,”
Nucl. Eng. Des.
,
235
(
8
), pp.
913
924
.10.1016/j.nucengdes.2004.11.011
12.
Pizzarelli
,
M.
,
2018
, “
The Status of the Research on the Heat Transfer Deterioration in Supercritical Fluids: A Review
,”
Int. Commun. Heat Mass Transfer
,
95
, pp.
132
138
.10.1016/j.icheatmasstransfer.2018.04.006
13.
Rogak
,
S. N.
, and
Faraji
,
D.
,
2004
, “
Heat Transfer to Water-Oxygen Mixtures at Supercritical Pressure
,”
ASME J. Heat Transfer
,
126
(
3
), pp.
419
424
.10.1115/1.1731329
14.
Du
,
Z.
,
Lin
,
W.
, and
Gu
,
A.
,
2011
, “
Prediction of Turbulent Convective Heat Transfer to Supercritical CH4/N2 in a Vertical Circular Tube
,”
ASME J. Heat Transfer
,
133
(
11
), p.
111701
.10.1115/1.4004433
15.
Stathopoulos
,
P.
,
Ninck
,
K.
, and
von Rohr
,
R.
,
2012
, “
Heat Transfer of Supercritical Mixtures of Water, Ethanol and Nitrogen in a Bluff Body Annular Flow
,”
J. Supercrit. Fluids
,
70
, pp.
112
118
.10.1016/j.supflu.2012.06.006
16.
Kravanja
,
G.
,
Zajc
,
G.
,
Knez
,
Z.
,
Skerget
,
M.
,
Marcic
,
S.
, and
Knez
,
M.
,
2018
, “
Heat Transfer Performance of CO2, Ethane Their Azeotropic Mixture under Supercrit. Conditions
,”
Energy
,
152
, pp.
190
201
.10.1016/j.energy.2018.03.146
17.
Wu
,
H.
,
Zhang
,
H.
,
Li
,
S.
,
Liu
,
D.
, and
Li
,
Q.
,
2020
, “
Apparatus for Investigation of Heat Transfer to H2O/CO2 Mixtures in Both Near-Critical and Supercritical Regions
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
721
, p.
012071
.10.1088/1757-899X/721/1/012071
18.
Li
,
Z.
,
Wu
,
Y.
,
Lu
,
J.
,
Zhang
,
D.
, and
Zhang
,
H.
,
2014
, “
Heat Transfer to Supercritical Water in Circular Tubes With Circumferentially Non-Uniform Heating
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
190
200
.10.1016/j.applthermaleng.2014.05.013
19.
Mokry
,
S.
,
Pioro
,
I. L.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.10.1016/j.nucengdes.2010.06.012
20.
Dahl
,
S.
,
Fredenslund
,
A.
, and
Rasmussen
,
P.
,
1991
, “
The MHV2 Model: A UNIFAC-Based Equation of State Model for Prediction of Gas Solubility and Vapor-Liquid Equilibria at Low and High Pressures
,”
Ind. Eng. Chem. Res.
,
30
(
8
), pp.
1936
1945
.10.1021/ie00056a041
21.
Dahl
,
S.
, and
Michelsen
,
M. L.
,
1990
, “
High‐Pressure Vapor‐Liquid Equilibrium With a UNIFAC‐Based Equation of State
,”
AlChE J.
,
36
(
12
), pp.
1829
1836
.10.1002/aic.690361207
22.
Todheide
,
K.
, and
Franck
,
E. U.
,
1963
, “
Das Zweiphasengebiet Und Die Kritische Kurve im System Kohlendioxid—Wasser Bis zu Drucken Von 3500 Bar
,”
Z. Phys. Chem.
,
37
(
5–6
), pp.
387
401
.10.1524/zpch.1963.37.5_6.387
23.
Huron
,
M. J.
, and
Vidal
,
J.
,
1979
, “
New Mixing Rules in Simple Equations of State for Representing Vapour-Liquid Equilibria of Strongly Non-Ideal Mixtures
,”
Fluid Phase Equilib.
,
3
(
4
), pp.
255
271
.10.1016/0378-3812(79)80001-1
24.
Oparin
,
R.
,
Tassaing
,
T.
,
Danten
,
Y.
, and
Besnard
,
M.
,
2004
, “
A Vibrational Spectroscopic Study of Structure Evolution of Water Dissolved in Supercritical Carbon Dioxide Under Isobaric Heating
,”
J. Chem. Phys.
,
120
(
22
), pp.
10691
10698
.10.1063/1.1739214
25.
Li
,
F.
, and
Bai
,
B.
,
2019
, “
A Model of Heat Transfer Coefficient for Supercritical Water Considering the Effect of Heat Transfer Deterioration
,”
Int. J. Heat Mass Transfer
,
133
, pp.
316
329
.10.1016/j.ijheatmasstransfer.2018.12.121
26.
Kong
,
X.
,
Li
,
H.
,
Zhang
,
Q.
,
Guo
,
K.
,
Luo
,
Q.
, and
Lei
,
X.
,
2019
, “
A New Criterion for the Onset of Heat Transfer Deterioration to Supercritical Water in Vertically-Upward Smooth Tubes
,”
Appl. Therm. Eng.
,
151
, pp.
66
76
.10.1016/j.applthermaleng.2019.01.077
27.
Cheng
,
X.
,
Zhao
,
M.
,
Feuerstein
,
F.
, and
Liu
,
X.
,
2019
, “
Prediction of Heat Transfer to Supercritical Water at Different Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
131
, pp.
527
536
.10.1016/j.ijheatmasstransfer.2018.11.028
28.
Sarrade
,
S.
,
Feron
,
D.
,
Rouillard
,
F.
,
Perrin
,
S.
,
Robin
,
R.
,
Ruiz
,
J.-C.
, and
Turc
,
H.-A.
,
2017
, “
Overview on Corrosion in Supercritical Fluids
,”
J. Supercrit. Fluids
,
120
, pp.
335
344
.10.1016/j.supflu.2016.07.022
29.
Vostrikov
,
A. A.
, and
Fedyaeva
,
O. N.
,
2010
, “
Mechanism and Kinetics of Al2O3 Nanoparticles Formation by Reaction of Bulk Al With H2O and CO2 at Sub- and Supercritical Conditions
,”
J. Supercrit. Fluids
,
55
(
1
), pp.
307
315
.10.1016/j.supflu.2010.05.022
You do not currently have access to this content.