Abstract
An iterative design algorithm is used to adjust the shape of a conducting solid body that is subjected to a surface heat flux and cooled simultaneously by free convection and radiation in order to reduce the overall thermal resistance. Parametric simulations are carried out over a range of domain dimensions and emissivity values to determine the sensitivity of (i) the predicted solid shape and (ii) the overall thermal resistance to the relative strength of convection or radiation. Results show that, for the conditions considered, surface radiation has a significant influence on the predicted optimal solid geometry and overall thermal resistance.
Issue Section:
Heat and Mass Transfer
References
1.
Bar-Cohen
,
A.
, 1979
, “
Fin Thickness for an Optimized Natural Convection Array of Rectangular Fins
,” ASME J. Heat Transfer
,
101
(3
), pp. 564
–566
.10.1115/1.34510322.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003
, Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin
.3.
Li
,
Q.
,
Steven
,
G. P.
,
Xie
,
Y. M.
, and
Querin
,
O. M.
, 2004
, “
Evolutionary Topology Optimization for Temperature Reduction of Heat Conducting Fields
,” Int. J. Heat Mass Transfer
,
47
(23
), pp. 5071
–5083
.10.1016/j.ijheatmasstransfer.2004.06.0104.
Gersborg-Hansen
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2006
, “
Topology Optimization of Heat Conduction Problems Using the Finite Volume Method
,” Struct. Multidiscip. Optim.
,
31
(4
), pp. 251
–259
.10.1007/s00158-005-0584-35.
Gao
,
T.
,
Zhang
,
W. H.
,
Zhu
,
J. H.
,
Xu
,
Y. J.
, and
Bassir
,
D. H.
, 2008
, “
Topology Optimization of Heat Conduction Problem Involving Design-Dependent Heat Load Effect
,” Finite Elem. Anal. Des.
,
44
(14
), pp. 805
–813
.10.1016/j.finel.2008.06.0016.
Marck
,
G.
,
Nemer
,
M.
,
Harion
,
J. L.
,
Russeil
,
S.
, and
Bougeard
,
D.
, 2012
, “
Topology Optimization Using the SIMP Method for Multiobjective Problems
,” Numer. Heat Transfer B
,
61
(6
), pp. 439
–470
.10.1080/10407790.2012.6879797.
Dirker
,
J.
, and
Meyer
,
J. P.
, 2013
, “
Topology Optimization for an Internal Heat-Conduction Cooling Scheme in a Square Domain for High Heat Flux Applications
,” ASME J. Heat Transfer
,
135
(11
), p. 111010
.10.1115/1.40246158.
Xia
,
Q.
,
Shi
,
T.
, and
Xia
,
L.
, 2018
, “
Topology Optimization for Heat Conduction by Combining Level Set Method and BESO Method
,” Int. J. Heat Mass Transfer
,
127
, pp. 200
–209
.10.1016/j.ijheatmasstransfer.2018.08.0369.
Yin
,
L.
, and
Ananthasuresh
,
G.
, 2002
, “
A Novel Topology Design Scheme for the Multi-Physics Problems of Electro-Thermally Actuated Compliant Micromechanisms
,” Sens. Actuators, A
,
97–98
, pp. 599
–609
.10.1016/S0924-4247(01)00853-610.
Bruns
,
T. E.
, 2007
, “
Topology Optimization of Convection-Dominated, Steady-State Heat Transfer Problems
,” Int. J. Heat Mass Transfer
,
50
(15–16
), pp. 2859
–2873
.10.1016/j.ijheatmasstransfer.2007.01.03911.
Ahn
,
S. H.
, and
Cho
,
S.
, 2010
, “
Level Set-Based Topological Shape Optimization of Heat Conduction Problems Considering Design-Dependent Convection Boundary
,” Numer. Heat Transfer B
,
58
(5
), pp. 304
–322
.10.1080/10407790.2010.52286912.
Yoon
,
G. H.
, 2010
, “
Topological Design of Heat Dissipating Structure With Forced Convective Heat Transfer
,” J. Mech. Sci. Technol.
,
24
(6
), pp. 1225
–1233
.10.1007/s12206-010-0328-113.
Koga
,
A. A.
,
Lopes
,
E. C. C.
,
Nova
,
H. F. V.
,
de Lima
,
C. R.
, and
Silva
,
E. C. N.
, 2013
, “
Development of Heat Sink Device by Using Topology Optimization
,” Int. J. Heat Mass Transfer
,
64
, pp. 759
–772
.10.1016/j.ijheatmasstransfer.2013.05.00714.
Alexandersen
,
J.
,
Aage
,
N.
,
Andreasen
,
C. S.
, and
Sigmund
,
O.
, 2014
, “
Topology Optimisation for Natural Convection Problems
,” Int. J. Numer. Methods Fluids
,
76
(10
), pp. 699
–721
.10.1002/fld.395415.
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Aage
,
N.
, 2016
, “
Large Scale Three-Dimensional Topology Optimisation of Heat Sinks Cooled by Natural Convection
,” Int. J. Heat Mass Transfer
,
100
, pp. 876
–891
.10.1016/j.ijheatmasstransfer.2016.05.01316.
Alexandersen
,
J.
,
Sigmund
,
O.
,
Meyer
,
K. E.
, and
Lazarov
,
B. S.
, 2018
, “
Design of Passive Coolers for Light-Emitting Diode Lamps Using Topology Optimisation
,” Int. J. Heat Mass Transfer
,
122
, pp. 138
–149
.10.1016/j.ijheatmasstransfer.2018.01.10317.
Asmussen
,
J.
,
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Andreasen
,
C. S.
, 2019
, “
A ‘Poor Man's’ Approach to Topology Optimization of Natural Convection Problems
,” Struct. Multidiscip. Optim.
,
59
(4
), pp. 1105
–1124
.10.1007/s00158-019-02215-918.
Lei
,
T.
,
Alexandersen
,
J.
,
Lazarov
,
B.
,
Wang
,
F.
,
Haertel
,
J.
,
De Angelis
,
S.
,
Sanna
,
S.
,
Sigmund
,
O.
, and
Engelbrecht
,
K.
, 2018
, “
Investment Casting and Experimental Testing of Heat Sinks Designed by Topology Optimization
,” Int. J. Heat Mass Transfer
,
127
, pp. 396
–412
.10.1016/j.ijheatmasstransfer.2018.07.06019.
Castro
,
D. A.
,
Kiyono
,
C. Y.
, and
Silva
,
E. C. N.
, 2015
, “
Design of Radiative Enclosures by Using Topology Optimization
,” Int. J. Heat Mass Transfer
,
88
, pp. 880
–890
.10.1016/j.ijheatmasstransfer.2015.04.07720.
Sevart
,
C. D.
, and
Bergman
,
T. L.
, 2019
, “
An Iterative Design Method to Reduce the Overall Thermal Resistance in a Conjugate Conduction-Free Convection Configuration
,” Front. Heat Mass Transfer
,
13
, p. 10
.10.5098/hmt.13.1821.
Patankar
,
S. V.
, 1980
, Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.22.
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2017
, Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ
.23.
Hottel
,
H. C.
, 1954
, “Radiant Heat Transmission” Heat Transmission
,
W. H.
McAdams
, ed.,
McGraw-Hill
, New York
.24.
Emery
,
A. F.
,
Johansson
,
O.
,
Lobo
,
M.
, and
Abrous
,
A.
, 1991
, “
A Comparative-Study of Methods for Computing the Diffuse-Radiation View Factors for Complex Structures
,” ASME J. Heat Transfer
,
113
(2
), pp. 413
–412
.10.1115/1.291057725.
Eftychiou
,
M. A.
,
Bergman
,
T. L.
, and
Masada
,
G. Y.
, 1993
, “
A Detailed Thermal Model of the Infrared Reflow Soldering Process
,” ASME J. Electron. Packag.
,
115
(1
), pp. 55
–62
.10.1115/1.290930226.
Holtzman
,
G. A.
,
Hill
,
R. W.
, and
Ball
,
K. S.
, 2000
, “
Laminar Natural Convection in Isosceles Triangular Enclosures Heated From Below and Symmetrically Cooled From Above
,” ASME J. Heat Transfer
,
122
(3
), pp. 485
–491
.10.1115/1.128870727.
Rowley
,
J. C.
, and
Payne
,
J. B.
, 1964
, “
Steady State Temperature Solution for a Heat Generating Circular Cylinder Cooled by a Ring of Holes
,” ASME J. Heat Transfer
,
86
(4
), pp. 531
–536
.10.1115/1.368873728.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
, 1994
, “
Treatment of Irregular Geometries Using a Cartesian Coordinates Finite Volume Radiation Heat Transfer Procedure
,” Numer. Heat Transfer, B
,
26
(2
), pp. 225
–235
.10.1080/1040779940891492729.
Akiyama
,
M.
, and
Chong
,
Q. P.
, 1997
, “
Numerical Analysis of Natural Convection With Surface Radiation in a Square Enclosure
,” Numer. Heat Transfer A
,
32
(4
), pp. 419
–433
.10.1080/10407789708913899Copyright © 2021 by ASME
You do not currently have access to this content.