Abstract

Medium scale (30 cm diameter) methanol pool fires were simulated using the latest fire modeling suite implemented in Sierra/Fuego, a low Mach number multiphysics reacting flow code. The sensitivity of model outputs to various model parameters was studied with the objective of providing model validation. This work also assesses model performance relative to other recently published large eddy simulations (LES) of the same validation case. Two pool surface boundary conditions were simulated. The first was a prescribed fuel mass flux and the second used an algorithm to predict mass flux based on a mass and energy balance at the fuel surface. Gray gas radiation model parameters (absorption coefficients and gas radiation sources) were varied to assess radiant heat losses to the surroundings and pool surface. The radiation model was calibrated by comparing the simulated radiant fraction of the plume to experimental data. The effects of mesh resolution were also quantified starting with a grid resolution representative of engineering type fire calculations and then uniformly refining that mesh in the plume region. Simulation data were compared to experimental data collected at the University of Waterloo and the National Institute of Standards and Technology (NIST). Validation data included plume temperature, radial and axial velocities, velocity temperature turbulent correlations, velocity velocity turbulent correlations, radiant and convective heat fluxes to the pool surface, and plume radiant fraction. Additional analyses were performed in the pool boundary layer to assess simulated flame anchoring and the effect on convective heat fluxes. This work assesses the capability of the latest Fuego physics and chemistry model suite and provides additional insight into pool fire modeling for nonluminous, nonsooting flames.

References

1.
IAFSS,
2021
, “
International Association for Fire Safety Science (IAFSS) Working Group on Measurement and Computation of Fire Phenomena
,” International Association of Fire Safety Science Working Group on Measurement and Computation of Fire Phenomena, accessed Apr. 5, 2022, https://github.com/MaCFP/macfp-db/tree/master/Liquid_Pool_Fires/Waterloo_Methanol/Computational_Results/2021
2.
Chan Kim
,
S.
,
Lee
,
K. Y.
, and
Hamins
,
A.
,
2019
, “
Energy Balance in Medium-Scale Methanol, Ethanol, and Acetone Pool Fires
,”
Fire Saf. J.
,
107
, pp.
44
53
.10.1016/j.firesaf.2019.01.004
3.
Chen
,
J.
,
Sung
,
K.
,
Wang
,
Z.
,
Tam
,
W. C.
,
Lee
,
K. Y.
, and
Hamins
,
A.
,
2021
, “
The Evolving Temperature Field in a 1-m Methanol Pool Fire
,”
J. Fire Sci.
,
39
(
4
), pp.
309
323
.10.1177/07349041211019636
4.
Chen
,
Z.
,
Wen
,
J.
,
Xu
,
B.
, and
Dembele
,
S.
,
2014
, “
Large Eddy Simulation of a Medium-Scale Methanol Pool Fire Using the Extended Eddy Dissipation Concept
,”
Int. J. Heat Mass Transfer
,
70
, pp.
389
408
.10.1016/j.ijheatmasstransfer.2013.11.010
5.
Hamins
,
A.
,
Fischer
,
S. J.
,
Kashiwagi
,
T.
,
Klassen
,
M. E.
, and
Gore
,
J. P.
,
1994
, “
Heat Feedback to the Fuel Surface in Pool Fires
,”
Combust. Sci. Technol.
,
97
(
1–3
), pp.
37
62
.10.1080/00102209408935367
6.
Hamins
,
A.
,
2016
,
Energetics of Small and Moderate-Scale Gaseous Pool Fires
,
US Department of Commerce, National Institute of Standards and Technology
, Gaithersburg, MD.
7.
Ma
,
L.
,
Nmira
,
F.
, and
Consalvi
,
J.-L.
,
2020
, “
Large Eddy Simulation of Medium-Scale Methanol Pool Fires—Effects of Pool Boundary Conditions
,”
Combust Flame
,
222
, pp.
336
354
.10.1016/j.combustflame.2020.09.007
8.
Sung
,
K.
,
Chen
,
J.
,
Bundy
,
M.
, and
Hamins
,
A.
,
2021
, “
The Characteristics of a 1 m Methanol Pool Fire
,”
Fire Saf. J.
,
120
, p.
103121
.10.1016/j.firesaf.2020.103121
9.
Weckman
,
E. J.
,
1987
, “
The Structure of the Flowfield Near the Base of A Medium-Scale Pool Fire
,” Ph.D. dissertation,
University of Waterloo
,
Waterloo, ON
.
10.
Weckman
,
E. J.
, and
Strong
,
A. B.
,
1996
, “
Experimental Investigation of the Turbulence Structure of Medium-Scale Methanol Pool Fires
,”
Combust Flame
,
105
(
3
), pp.
245
266
.10.1016/0010-2180(95)00103-4
11.
Falkenstein‐Smith
,
R.
,
Sung
,
K.
,
Chen
,
J.
, and
Hamins
,
A.
,
2021
, “
The Chemical Structure of a 30 cm Methanol Pool Fire
,”
Fire Mater.
,
45
(
3
), pp.
429
434
.10.1002/fam.2838
12.
Falkenstein-Smith
,
R.
,
Sung
,
K.
,
Chen
,
J.
, and
Hamins
,
A.
,
2021
, “
Chemical Structure of Medium-Scale Liquid Pool Fires
,”
Fire Saf. J
,
120
, p. 103099.10.1016/j.firesaf.2020.103099
13.
Prasad
,
K.
,
Li
,
C.
,
Kailasanath
,
K.
,
Ndubizu
,
C.
,
Ananth
,
R.
, and
Tatem
,
P. A.
,
1999
, “
Numerical Modelling of Methanol Liquid Pool Fires
,”
Combust. Theory Modell.
,
3
(
4
), pp.
743
768
.10.1088/1364-7830/3/4/308
14.
Tian
,
X.
,
Liu
,
C.
,
Zhong
,
M.
, and
Shi
,
C.
,
2020
, “
Experimental Study and Theoretical Analysis on Influencing Factors of Burning Rate of Methanol Pool Fire
,”
Fuel
,
269
, p.
117467
.10.1016/j.fuel.2020.117467
15.
Wakatsuki
,
K.
,
Jackson
,
G. S.
,
Hamins
,
A.
, and
Nyden
,
M. R.
,
2007
, “
Effects of Fuel Absorption on Radiative Heat Transfer in Methanol Pool Fires
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2573
2580
.10.1016/j.proci.2006.08.049
16.
Ahmed
,
M. M.
, and
Trouvé
,
A.
,
2021
, “
Large Eddy Simulation of the Unstable Flame Structure and Gas-to-Liquid Thermal Feedback in a Medium-Scale Methanol Pool Fire
,”
Combust. Flame
,
225
, pp.
237
254
.10.1016/j.combustflame.2020.10.055
17.
Gore
,
J.
,
Klassen
,
M.
,
Hamins
,
A.
, and
Kashiwagi
,
T.
, 1991, “
Fuel Property Effects on Burning Rate and Radiative Transfer From Liquid Pool Flames
,”
Proceedings of the Third International Symposium Fire Safety Science
, Vol. 3, Edinburgh, Scotland, July 8–12, pp.
395
404
.
18.
Drysdale
,
D.
,
1999
,
An Introduction to Fire Dynamics
,
Wiley
,
Chichester; New York
.
19.
Orloff
,
L.
, and
De Ris
,
J.
,
1982
, “
Froude Modeling of Pool Fires
,”
Symp. (Int.) Combust.
,
19
(
1
), pp.
885
895
.10.1016/S0082-0784(82)80264-6
20.
Ebrahim Zadeh
,
S.
,
Beji
,
T.
, and
Merci
,
B.
,
2016
, “
Assessment of FDS 6 Simulation Results for a Large-Scale Ethanol Pool Fire
,”
Combust. Sci. Technol.
,
188
(
4–5
), pp.
571
580
.10.1080/00102202.2016.1139367
21.
Stewart
,
J. R.
,
Phylaktou
,
H. N.
,
Andrews
,
G. E.
, and
Burns
,
A. D.
,
2021
, “
Evaluation of CFD Simulations of Transient Pool Fire Burning Rates
,”
J. Loss Prevent. Proc.
,
71
, p.
104495
.10.1016/j.jlp.2021.104495
22.
Bouhafid
,
A.
,
Vantelon
,
J. P.
,
Joulain
,
P.
, and
Fernandez-Pello
,
A. C.
,
1989
, “
On the Flame Structure at the Base of a Pool Fire
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
1291
1298
.10.1016/S0082-0784(89)80140-7
23.
Kang
,
Y.
, and
Wen∗
,
J. X.
,
2004
, “
Large Eddy Simulation of a Small Pool Fire
,”
Combust. Sci. Technol.
,
176
(
12
), pp.
2193
2223
.10.1080/00102200490515074
24.
Mense
,
M.
,
Pizzo
,
Y.
,
Prétrel
,
H.
,
Lallemand
,
C.
, and
Porterie
,
B.
,
2019
, “
Experimental and Numerical Study on Low-Frequency Oscillating Behaviour of Liquid Pool Fires in a Small-Scale Mechanically-Ventilated Compartment
,”
Fire Saf. J.
,
108
, p.
102824
.10.1016/j.firesaf.2019.102824
25.
Venkatesh
,
S.
,
Ito
,
A.
,
Saito
,
K.
, and
Wichman
,
I. S.
,
1996
, “
Flame Base Structure of Small-Scale Pool Fires
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
1437
1443
.10.1016/S0082-0784(96)80364-X
26.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1979
, “
Comprehensive Mechanism for Methanol Oxidation
,”
Combust. Sci. Technol.
,
20
(
3–4
), pp.
125
140
.10.1080/00102207908946902
27.
Ren
,
N.
, and
Wang
,
Y.
,
2021
, “
A Convective Heat Transfer Model for LES Fire Modeling
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
4535
4542
.10.1016/j.proci.2020.07.077
28.
Vali
,
A.
,
Nobes
,
D. S.
, and
Kostiuk
,
L. W.
,
2014
, “
Transport Phenomena Within the Liquid Phase of a Laboratory-Scale Circular Methanol Pool Fire
,”
Combust. Flame
,
161
(
4
), pp.
1076
1084
.10.1016/j.combustflame.2013.09.028
29.
Fukumoto
,
K.
,
Wen
,
J. X.
,
Li
,
M.
,
Ding
,
Y.
, and
Wang
,
C.
,
2020
, “
Numerical Simulation of Small Pool Fires Incorporating Liquid Fuel Motion
,”
Combust. Flame
,
213
, pp.
441
454
.10.1016/j.combustflame.2019.11.047
30.
SierraThermal/Fluid Development Team,
2020
,
SIERRA Low Mach Module: Fuego Theory Manual – Version 4.56.
Sandia National Laboratories
,
Albuquerque, NM
, Standard No. SAND2020-4007.
31.
Edwards
,
H.
,
Wiliams
,
A.
,
Sjaardema
,
G.
,
Baur
,
D.
, and
Cochran
,
W.
,
2010
,
Sierra Toolkit Computational Mesh Computational Model
,
Sandia National Laboratories
,
Albuquerque, NM
, Standard No. SAND2010-1192.
32.
The Trilinos Project Team,
2020
, “
The Trilinos Project
,” Trilinos Project, Albuquerque, NM, accessed Apr. 5, 2022, https://trilinos.github.io
33.
Domino
,
S.
,
2018
, “
Design-Order, Non-Conformal low-Mach Fluid Algorithms Using a Hybrid CVFEM/DG Approach
,”
J. Comput. Phys.
,
359
, pp.
331
351
.10.1016/j.jcp.2018.01.007
34.
Domino
,
S.
,
Hewson
,
J.
,
Knaus
,
R.
, and
Hansen
,
M.
,
2021
, “
Predicting Large-Scale Pool Fire Dynamics Using an Unsteady Flamelet- and Large-Eddy Simulation-Based Model Suite
,”
Phys. Fluids
,
33
, p.
085109
.10.1063/5.0060267
35.
Yoshizawa
,
A.
,
1993
, “
Bridging Between Eddy-Viscosity-Type and Second-Order Turbulence Models Through a Two-Scale Turbulence Theory
,”
Phys. Rev. E
,
48
(
1
), pp.
273
281
.10.1103/PhysRevE.48.273
36.
Aro
,
C.
,
Black
,
A.
,
Brown
,
A.
,
Burns
,
S.
,
Cochran
,
B.
,
Domino
,
S.
,
Evans
,
G.
,
Glaze
,
D.
,
Gritzo
,
L.
,
Hewson
,
H.
,
Houf
,
B.
,
Martinez
,
M.
,
Moen
,
C.
,
Newren
,
E.
,
Nicolette
,
V.
,
Sutherland
,
J.
,
Tauber
,
W.
,
Templeton
,
J.
,
Tieszen
,
S.
, and
Wagner
,
G.
,
2018
,
Sierra Fuego Theory Manual – Version 4.50
,
Sandia National Laboratories
,
Albuquerque, NM
.
37.
Domino
,
S.
,
2015
, “
Sierra Low Mach Module: Nalu Theory Manual 1.0
,” Sandia National Laboratories, Albuquerque, NM, Standard No. SAND2015-3107W, accessed Apr. 5, 2022, https://github.com/NaluCFD/NaluDoc
38.
Sandia National Laboratories,
2021
, “
The CUBIT Geometry and Mesh Generation Toolkit
,” Sandia National Laboratories, Albuquerque, NM, accessed Apr. 5, 2022, https://cubit.sandia.gov/
39.
Brown
,
A. L.
,
Gill
,
W.
, and
Lopez
,
C.
,
2006
, “
Predictive Evolution of Fuel From a Liquid Pool Fire: Phenomenology Identification and Ranking Exercise
,”
ASME
Paper No. IMECE2006-15157.10.1115/IMECE2006-15157
40.
Brown
,
A. L.
, and
Vembe
,
B. E.
,
2006
, “
Evaluation of a Model for the Evaporation of Fuel From a Liquid Pool in a CFD Fire Code
,”
ASME
Paper No. IMECE2006-15147.10.1115/IMECE2006-15147
41.
Goodwin
,
R. D.
,
1987
, “
Methanol Thermodynamic Properties From 176 to 673 K at Pressures to 700 Bar
,”
J. Phys. Chem. Ref. Data
,
16
(
4
), pp.
799
892
.10.1063/1.555786
42.
NIST
,
2016
, “
NIST Chemistry WebBook: NIST Standard Reference Database Number 69
,” National Institute of Standards and Technology, Gaithersburg, MD, Standard.
43.
Domino
,
S. P.
,
Sakievich
,
P.
, and
Barone
,
M.
,
2019
, “
An Assessment of Atypical Mesh Topologies for low-Mach Large-Eddy Simulation
,”
Comput. Fluids
,
179
, pp.
655
669
.10.1016/j.compfluid.2018.12.002
44.
Koo
,
H.
,
Hewson
,
J. C.
, and
Knaus
,
R. C.
,
2018
,
LES Soot-Radiation Predictions of Buoyant Fire Plumes
,
Western States Section of the Combustion Institute
,
Corvallis, OR
, pp.
1
14
.
45.
Mechanical and Aerospace Engineering (Combustion Research),
2021
, “
Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism
,” University of California at San Diego, San Diego, CA, accessed Jan. 15, 2019, https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
46.
Hansen
,
M.
,
Armstrong
,
E.
, and
McConnell
,
J.
,
2020
, “
Spitfire Computer Software, Version 1.0
,”
USDOE
, Sandia National Laboratories, Albuquerque, NM, accessed Apr. 5, 2022, https://www.osti.gov/servlets/purl/1700684, https://github.com/sandialabs/Spitfire
47.
Tien
,
C. L.
, and
Lee
,
S. C.
,
1982
, “
Flame Radiation
,”
Prog. Energy Combust.
,
8
(
1
), pp.
41
59
.10.1016/0360-1285(82)90008-9
48.
National Fire Protection, A., and Society of Fire Protection, E.
,
1995
,
SFPE Handbook of Fire Protection Engineering
,
National Fire Protection Association; Society of Fire Protection Engineers
,
Quincy, MA and Boston, MA
.
49.
Barlow
,
R. S.
,
Karpetis
,
A. N.
,
Frank
,
J. H.
, and
Chen
,
J. Y.
,
2001
, “
Scalar Profiles and NO Formation in Laminar Opposed-Flow Partially Premixed Methane/Air Flames
,”
Combust. Flame
,
127
(
3
), pp.
2102
2118
.10.1016/S0010-2180(01)00313-3
50.
Smith
,
N.
,
Gore
,
H.
,
Kim
,
J.
, and
Tang
,
Q.
,
2003
, “
Radiation Models
,” International Workshop on Measurement and Computation of Turbulent Flames, International Symposium on Combustion, Pittsburgh, PA, accessed Apr. 5, 2022, https://tnfworkshop.org/radiation/
51.
Grosshandler
,
W.
, 1993, “
Radcal: A Narrow-Band Model for Radiation Calculations in a Combustion Environment
,” National Institute of Standards and Technology, Gaithersburg, MD, NIST Technical Note: 1402.
52.
Krishnamoorthy
,
G.
,
2010
, “
A Comparison of Gray and Non-Gray Modeling Approaches to Radiative Transfer in Pool Fire Simulations
,”
J. Hazard. Mater.
,
182
(
1–3
), pp.
570
580
.10.1016/j.jhazmat.2010.06.071
53.
Hamins
,
A.
,
Klassen
,
M.
,
Gore
,
J.
, and
Kashiwagi
,
T.
,
1991
, “
Estimate of Flame Radiance Via a Single Location Measurement in Liquid Pool Fires
,”
Combust. Flame
,
86
(
3
), pp.
223
228
.10.1016/0010-2180(91)90102-H
54.
Baumgart
,
A.
,
Voskuilen
,
T.
,
Sakievich
,
P.
, and
Hewson
,
J. C.
,
2019
, “
Soot and Radiation Interactions in Turbulent Jet Flames Studied With Reynolds-Averaged Navier-Stokes Simulations
,”
Western States Section of the Combustion Institute, Albuquerque, NM
, pp.
1
12
.
55.
McDermott, R., Ed.,
2020
, “
Measurement and Computation of Fire Phenomena Database
,” International Association of Fire Safety Science Working Group on Measurement and Computation of Fire Phenomena, accessed Apr. 5, 2022, https://github.com/MaCFP/macfp-db
56.
Klassen
,
M.
, and
Gore
,
J. P.
,
1994
,
Structure and Radiation Properties of Pool Fires
,
C. f. F.
Research
, ed.,
National Institutes of Standards and Technology
, Gaithersburg, MD, pp.
1
156
.
57.
Cetegen
,
B. M.
, and
Ahmed
,
T. A.
,
1993
, “
Experiments on the Periodic Instability of Buoyant Plumes and Pool Fires
,”
Combust. Flame
,
93
(
1–2
), pp.
157
184
.10.1016/0010-2180(93)90090-P
58.
Incropera
,
F. P.
, and
Incropera
,
F. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
59.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge/New York, UK
.
You do not currently have access to this content.