Abstract

Heat transfer characteristics of random suspensions of 0.25 aspect ratio (AR) cylinders are investigated for Reynolds numbers (Re) between 10 and 300 and solid fraction (φ) ranging from 0.1 to 0.3 using particle resolved simulations. The effect of particle inclination with respect to flow and particle clustering on heat transfer is investigated. The Nusselt number decreases with an increase in inclination angle and the dependence becomes stronger as φ and Re increase. On the other hand, while prolate ellipsoid suspensions of AR 2.5 follow the same trend, the Nusselt number increases with inclination angle as AR increases to 5 and 10 and as φ increases. Local particle clustering nominally decreases the Nusselt number because of the dominance of thermal wakes. At low φ, this effect is felt only at low Re, but as φ increases, the effect spreads to higher Re. Similar but weaker trends are also found in suspensions of prolate ellipsoids of AR 2.5, 5, and 10. High AR, low Re prolate ellipsoids exhibit the greatest dependence of Nusselt number on local solid fraction. Implementation of two independent definitions of reference length, i.e., volume equivalent sphere diameter deq for ellipsoids and diameter dp of the cylindrical particle in the correlation of Tavassoli et al. (2015, “Direct Numerical Simulation of Fluid-Particle Heat Transfer in Fixed Random Arrays of Non-Spherical Particles,” Chem. Eng. Sci., 129, pp. 42–48) provides good estimates of the respective suspension mean Nusselt numbers.

References

1.
Ranz
,
W. E.
, and Marshall, W. R.,
1952
, “
Evaporation From Drops, Part I
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
148
.https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/759740
2.
Ranz
,
W. E.
, and Marshall, W. R.,
1952
, “
Evaporation From Drops, Part II
,”
Chem. Eng. Prog.
,
48
(
4
), pp.
173
180
.https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/759741
3.
Yuge
,
T.
,
1960
, “
Experiments on Heat Transfer From Spheres Including Combined Natural and Forced Convection
,”
ASME J. Heat Transfer-Trans. ASME
,
82
(
3
), pp.
214
220
.10.1115/1.3679912
4.
Johnson
,
T. A.
, and
Patel
,
V. C.
,
1999
, “
Flow Past a Sphere Up to a Reynolds Number of 300
,”
J. Fluid Mech.
,
378
, pp.
19
70
.10.1017/S0022112098003206
5.
Richter
,
A.
, and
Nikrityuk
,
P. A.
,
2013
, “
New Correlations for Heat and Fluid Flow Past Ellipsoidal and Cubic Particles at Different Angles of Attack
,”
Powder Technol.
,
249
, pp.
463
474
.10.1016/j.powtec.2013.08.044
6.
Richter
,
A.
, and
Nikrityuk
,
P. A.
,
2012
, “
Drag Forces and Heat Transfer Coefficients for Spherical, Cuboidal and Ellipsoidal Particles in Cross Flow at Sub-Critical Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1343
1354
.10.1016/j.ijheatmasstransfer.2011.09.005
7.
Wittig
,
K.
,
Richter
,
A.
, and
Golia
,
A.
,
2014
, “
CD and Nu Closure Relations for Spherical and Nonspherical Particles
,”
Gasification Processes: Modeling and Simulation
, Wiley-VCH, Weinheim, Germany, pp.
73
104
.
8.
Michaelides
,
E.
,
2006
,
Particles, Bubbles and Drops—Their Motion, Heat and Mass Transfer
,
World Scientific
, World Scientific Publishing, Singapore.
9.
Juncu
,
G.
,
2010
, “
Unsteady Heat Transfer From an Oblate/Prolate Spheroid
,”
Int. J. Heat Mass Transfer
,
53
(
17–18
), pp.
3483
3494
.10.1016/j.ijheatmasstransfer.2010.04.009
10.
Kishore
,
N.
, and
Gu
,
S.
,
2011
, “
Effect of Blockage on Heat Transfer Phenomena of Spheroid Particles at Moderate Reynolds and Prandtl Numbers
,”
Chem. Eng. Technol.
,
34
(
9
), pp.
1551
1558
.10.1002/ceat.201100007
11.
Ke
,
C.
,
Shu
,
S.
,
Zhang
,
H.
,
Yuan
,
H.
, and
Yang
,
D.
,
2018
, “
On the Drag Coefficient and Averaged Nusselt Number of an Ellipsoidal Particle in a Fluid
,”
Powder Technol.
,
325
, pp.
134
144
.10.1016/j.powtec.2017.10.049
12.
Nagendra
,
K.
,
Tafti
,
D. K.
, and
Viswanath
,
K.
,
2014
, “
A New Approach for Conjugate Heat Transfer Problems Using Immersed Boundary Method for Curvilinear Grid Based Solvers
,”
J. Comput. Phys.
,
267
, pp.
225
246
.10.1016/j.jcp.2014.02.045
13.
Kruggel-Emden
,
H.
,
Kravets
,
B.
,
Suryanarayana
,
M. K.
, and
Jasevicius
,
R.
,
2016
, “
Direct Numerical Simulation of Coupled Fluid Flow and Heat Transfer for Single Particles and Particle Packings by a LBM-Approach
,”
Powder Technol.
,
294
, pp.
236
251
.10.1016/j.powtec.2016.02.038
14.
Tenneti
,
S.
,
Sun
,
B.
,
Garg
,
R.
, and
Subramaniam
,
S.
,
2013
, “
Role of Fluid Heating in Dense Gas-Solid Flow as Revealed by Particle-Resolved Direct Numerical Simulation
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
471
479
.10.1016/j.ijheatmasstransfer.2012.11.006
15.
Sun
,
B.
,
Tenneti
,
S.
, and
Subramaniam
,
S.
,
2015
, “
Modeling Average Gas-Solid Heat Transfer Using Particle-Resolved Direct Numerical Simulation
,”
Int. J. Heat Mass Transfer
,
86
, pp.
898
913
.10.1016/j.ijheatmasstransfer.2015.03.046
16.
He
,
L.
, and
Tafti
,
D. K.
,
2017
, “
Heat Transfer in an Assembly of Ellipsoidal Particles at Low to Moderate Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
114
, pp.
324
336
.10.1016/j.ijheatmasstransfer.2017.06.068
17.
Singhal
,
A.
,
Cloete
,
S.
,
Radl
,
S.
,
Quinta-Ferreira
,
R.
, and
Amini
,
S.
,
2017
, “
Heat Transfer to a Gas From Densely Packed Beds of Cylindrical Particles
,”
Chem. Eng. Sci.
,
172
, pp.
1
12
.10.1016/j.ces.2017.06.003
18.
Tavassoli
,
H.
,
Peters
,
E. A. J. F.
, and
Kuipers
,
J. A. M.
,
2015
, “
Direct Numerical Simulation of Fluid-Particle Heat Transfer in Fixed Random Arrays of Non-Spherical Particles
,”
Chem. Eng. Sci.
,
129
, pp.
42
48
.10.1016/j.ces.2015.02.024
19.
Ma
,
H.
, and
Zhao
,
Y.
,
2018
, “
Investigating the Fluidization of Disk-Like Particles in a Fluidized Bed Using CFD-DEM Simulation
,”
Adv. Powder Technol.
,
29
(
10
), pp.
2380
2393
.10.1016/j.apt.2018.06.017
20.
Ma
,
H.
,
Xu
,
L.
, and
Zhao
,
Y.
,
2017
, “
CFD-DEM Simulation of Fluidization of Rod-Like Particles in a Fluidized Bed
,”
Powder Technol.
,
314
, pp.
355
366
.10.1016/j.powtec.2016.12.008
21.
He
,
L.
,
Tafti
,
D. K.
, and
Nagendra
,
K.
,
2017
, “
Evaluation of Drag Correlations Using Particle Resolved Simulations of Spheres and Ellipsoids in Assembly
,”
Powder Technol.
,
313
, pp.
332
343
.10.1016/j.powtec.2017.03.020
22.
He
,
L.
, and
Tafti
,
D.
,
2018
, “
Variation of Drag, Lift and Torque in a Suspension of Ellipsoidal Particles
,”
Powder Technol.
,
335
, pp.
409
426
.10.1016/j.powtec.2018.05.031
23.
Cao
,
Z.
, and
Tafti
,
D. K.
,
2018
, “
Investigation of Drag, Lift and Torque for Fluid Flow Past a Low Aspect Ratio (1:4) Cylinder
,”
Comput. Fluids
,
177
, pp.
123
135
.10.1016/j.compfluid.2018.10.002
24.
Cao
,
Z.
,
Tafti
,
D. K.
, and
Shahnam
,
M.
,
2021
, “
Modeling Drag Force in Ellipsoidal Particle Suspensions With Preferential Orientation
,”
Powder Technol.
,
378
, pp.
274
287
.10.1016/j.powtec.2020.09.067
25.
Akiki
,
G.
,
Jackson
,
T. L.
, and
Balachandar
,
S.
,
2017
, “
Pairwise Interaction Extended Point-Particle Model for a Random Array of Monodisperse Spheres
,”
J. Fluid Mech.
,
813
, pp.
882
928
.10.1017/jfm.2016.877
26.
Chen
,
Y.
, and
Müller
,
C. R.
,
2019
, “
Lattice Boltzmann Simulation of Gas-Solid Heat Transfer in Random Assemblies of Spheres: The Effect of Solids Volume Fraction on the Average Nusselt Number for Re ≤ 100
,”
Chem. Eng. J.
,
361
, pp.
1392
1399
.10.1016/j.cej.2018.10.182
27.
Tavassoli
,
H.
,
Kriebitzsch
,
S. H. L.
,
van der Hoef
,
M. A.
,
Peters
,
E. A. J. F.
, and
Kuipers
,
J. A. M.
,
2013
, “
Direct Numerical Simulation of Particulate Flow With Heat Transfer
,”
Int. J. Multiphase Flow
,
57
, pp.
29
37
.10.1016/j.ijmultiphaseflow.2013.06.009
28.
Lu
,
J.
,
Peters
,
E. A. J. F.
, and
Kuipers
,
J. A. M.
,
2019
, “
Direct Numerical Simulation of Fluid Flow and Dependently Coupled Heat and Mass Transfer in Fluid-Particle Systems
,”
Chem. Eng. Sci.
,
204
, pp.
203
219
.10.1016/j.ces.2019.02.043
29.
Gunn
,
D. J.
,
1978
, “
Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds
,”
Int. J. Heat Mass Transfer
,
21
(
4
), pp.
467
476
.10.1016/0017-9310(78)90080-7
30.
Deen
,
N. G.
,
Peters
,
E. A. J. F.
,
Padding
,
J. T.
, and
Kuipers
,
J. A. M.
,
2014
, “
Review of Direct Numerical Simulation of Fluid-Particle Mass, Momentum and Heat Transfer in Dense Gas-Solid Flows
,”
Chem. Eng. Sci.
,
116
, pp.
710
724
.10.1016/j.ces.2014.05.039
31.
Tavassoli Estahbanati
,
H.
,
2014
, “Direct Numerical Simulation of Dense Gas-Solid Non-Isothermal Flows,”
Ph.D. thesis
,
Technische Universiteit Eindhoven
, Eindhoven, The Netherlands.10.6100/IR782478
32.
Kravets
,
B.
,
Rosemann
,
T.
,
Reinecke
,
S. R.
, and
Kruggel-Emden
,
H.
,
2019
, “
A New Drag Force and Heat Transfer Correlation Derived From Direct Numerical LBM-Simulations of Flown Through Particle Packings
,”
Powder Technol.
,
345
, pp.
438
456
.10.1016/j.powtec.2019.01.028
33.
Yang
,
J.
,
Wang
,
Q.
,
Zeng
,
M.
, and
Nakayama
,
A.
,
2010
, “
Computational Study of Forced Convective Heat Transfer in Structured Packed Beds With Spherical or Ellipsoidal Particles
,”
Chem. Eng. Sci.
,
65
(
2
), pp.
726
738
.10.1016/j.ces.2009.09.026
34.
Yang
,
J.
,
Wang
,
J.
,
Bu
,
S.
,
Zeng
,
M.
,
Wang
,
Q.
, and
Nakayama
,
A.
,
2012
, “
Experimental Analysis of Forced Convective Heat Transfer in Novel Structured Packed Beds of Particles
,”
Chem. Eng. Sci.
,
71
, pp.
126
137
.10.1016/j.ces.2011.12.005
35.
Chen
,
Y.
, and
Müller
,
C. R.
,
2020
, “
Gas-Solid Heat Transfer in Assemblies of Cubes for ReV ≤ 100
,”
Chem. Eng. Sci.
,
216
, p.
115478
.10.1016/j.ces.2020.115478
36.
Cao
,
Z.
, and
Tafti
,
D. K.
,
2021
, “
Convective Heat Transfer in Suspensions of Prolate Ellipsoids
,”
Int. J. Heat Mass Transfer
,
177
, p.
121575
.10.1016/j.ijheatmasstransfer.2021.121575
37.
Tafti
,
D. K.
,
2001
, “
GenIDLEST: A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,”
ASME
Paper No. IMECE2001/FED-24966.10.1115/IMECE2001/FED-24966
38.
Tafti
,
D. K.
,
Amano
,
R.
, and
Sunden
,
B.
,
2011
, “
6 Time-Accurate Techniques for Turbulent Heat Transfer Analysis in Complex Geometries
,”
Comput. Fluid Dyn. Heat Transfer
,
41
, pp.
217
264
.10.2495/978-1-84564-144-3/06
39.
Cao
,
Z.
, and
Tafti
,
D. K. K.
,
2020
, “
Fluid Forces and Torques in Suspensions of Oblate Cylinders With Aspect Ratio 1:4
,”
Int. J. Multiphase Flow
,
131
, p.
103394
.10.1016/j.ijmultiphaseflow.2020.103394
40.
Cao
,
Z.
,
Tafti
,
D. K.
, and
Shahnam
,
M.
,
2020
, “
Development of Drag Correlation for Suspensions of Ellipsoidal Particles
,”
Powder Technol.
,
369
, pp.
298
310
.10.1016/j.powtec.2020.05.049
41.
Singhal
,
A.
,
Cloete
,
S.
,
Radl
,
S.
,
Quinta-Ferreira
,
R.
, and
Amini
,
S.
,
2017
, “
Heat Transfer to a Gas From Densely Packed Beds of Monodisperse Spherical Particles
,”
Chem. Eng. J.
,
314
, pp.
27
37
.10.1016/j.cej.2016.12.124
42.
He
,
L.
, and
Tafti
,
D. K.
,
2019
, “
A Supervised Machine Learning Approach for Predicting Variable Drag Forces on Spherical Particles in Suspension
,”
Powder Technol.
,
345
, pp.
379
389
.10.1016/j.powtec.2019.01.013
43.
Kravets
,
B.
,
Schulz
,
D.
,
Jasevičius
,
R.
,
Reinecke
,
S. R.
,
Rosemann
,
T.
, and
Kruggel-Emden
,
H.
,
2021
, “
Comparison of Particle-Resolved DNS (PR-DNS) and Non-Resolved DEM/CFD Simulations of Flow Through Homogenous Ensembles of Fixed Spherical and Non‐Spherical Particles
,”
Adv. Powder Technol.
,
32
(
4
), pp.
1170
1195
.10.1016/j.apt.2021.02.016
44.
Zhu
,
L. T.
,
Liu
,
Y. X.
, and
Luo
,
Z. H.
,
2019
, “
An Enhanced Correlation for Gas-Particle Heat and Mass Transfer in Packed and Fluidized Bed Reactors
,”
Chem. Eng. J.
,
374
, pp.
531
544
.10.1016/j.cej.2019.05.194
You do not currently have access to this content.