Abstract

Prior knowledge of the survival time of a person clothed with extreme cold-weather clothing would be useful in designing an appropriate fabric ensemble. The survival time may depend on ambient temperature, fabric insulation, and metabolic heat and can be evaluated by designing a suitable experiment. To study the effect of different parameters on the survival time of humans, one such experiment is designed in an in-house developed guarded hot plate instrument placed inside a cold chamber capable of maintaining the ambient temperature between 210 K and 310 K. The experiments were performed at three different subzero temperatures, three different fabric insulation, and selecting three metabolic heats. The transient temperature profiles at different locations of the fabric assembly were measured continuously. Further, a one-dimensional heat transfer model was developed to carry out the numerical simulation. The experimental and numerical transient temperature profiles across the fabric assembly agree well. The correlations developed for theoretically predicted survival times compare well with actual experimental data. The parametric analysis has shown that the ambient temperature is the most influencing parameter affecting the survival time followed by fabric insulation. The metabolic heat does not have a significant effect on survival time.

References

1.
Kron
,
W.
,
Löw
,
P.
, and
Kundzewicz
,
Z. W.
,
2019
, “
Changes in Risk of Extreme Weather Events in Europe
,”
Environ. Sci. Policy
,
100
, pp.
74
83
.10.1016/j.envsci.2019.06.007
2.
Chen
,
T. H.
,
Li
,
X.
,
Zhao
,
J.
, and
Zhang
,
K.
,
2017
, “
Impacts of Cold Weather on All-Cause and Cause-Specific Mortality in Texas, 1990–2011
,”
Environ. Pollut.
,
225
, pp.
244
251
.10.1016/j.envpol.2017.03.022
3.
Renberg
,
J.
,
Christiansen
,
M. T.
,
Wiggen
,
O. N.
,
Roeleveld
,
K.
,
Bardal
,
E. M.
, and
Reinertsen
,
R. E.
,
2020
, “
Metabolic Rate and Muscle Activation Level When Wearing State-of-the-Art Cold-Weather Protective Clothing During Level and Inclined Walking
,”
Appl. Ergon.
,
82
, p.
102956
.10.1016/j.apergo.2019.102956
4.
Raatikka
,
V. P.
,
Rytkönen
,
M.
,
Näyhä
,
S.
, and
Hassi
,
J.
,
2007
, “
Prevalence of Cold-Related Complaints, Symptoms and Injuries in the General Population: The FINRISK 2002 Cold Substudy
,”
Int. J. Biometeorol.
,
51
(
5
), pp.
441
448
.10.1007/s00484-006-0076-1
5.
Howard
,
E.
, and
Oakley
,
N.
,
1984
, “
The Design and Function of Military Footwear: A Review Following Experiences in the South Atlantic
,”
Ergonomics
,
27
(
6
), pp.
631
637
.10.1080/00140138408963535
6.
Holmér
,
I.
,
Hassi
,
J.
,
Ikäheimo
,
T. M.
, and
Jaakkola
,
J. J.
,
2001
, “
Cold Stress: Effects on Performance and Health
,”
Patty's Toxicol.
,
6
, pp.
1
26
.
7.
Jurkovich
,
G. J.
,
2007
, “
Environmental Cold-Induced Injury
,”
Surg. Clin.
,
87
(
1
), pp.
247
267
.
8.
Murphy
,
J. V.
,
Banwell
,
P. E.
,
Roberts
,
A. H.
, and
McGrouther
,
D. A.
,
2000
, “
Frostbite: Pathogenesis and Treatment
,”
J. Trauma Acute Care Surg.
,
48
(
1
), p.
171
.10.1097/00005373-200001000-00036
9.
Hallam
,
M. J.
,
Cubison
,
T.
,
Dheansa
,
B.
, and
Imray
,
C.
,
2010
, “
Managing Frostbite
,”
BMJ
,
341
, pp.
c5864
c5864
.10.1136/bmj.c5864
10.
Ikäheimo
,
T. M.
, and
Hassi
,
J.
,
2011
, “
Frostbites in Circumpolar Areas
,”
Global Health Action
,
4
(
1
), p.
8456
.10.3402/gha.v4i0.8456
11.
Centers for Disease Control and Prevention
,
2001
, “
Preventing Injuries Associated With Extreme Cold
,”
Int. J. Trauma Nurs.
,
7
(
1
), pp.
26
30
.10.1067/mtn.2001.112376
12.
Rao
,
N. B.
,
Kotresh
,
T. M.
, and
Indushekar
,
R.
,
2011
, “
Indian Soldiers Warm Up to Cold Weather Clothing
,” NISCAIR-CSIR, 48(12), pp.
28
31
.
13.
Sessler
,
D. I.
,
2001
, “
Complications and Treatment of Mild Hypothermia
,”
J. Am. Soc. Anesthesiol.
,
95
(
2
), pp.
531
543
.10.1097/00000542-200108000-00040
14.
Jiang
,
J. Y.
,
Xu
,
W.
,
Li
,
W. P.
,
Gao
,
G. Y.
,
Bao
,
Y. H.
,
Liang
,
Y. M.
, and
Luo
,
Q. Z.
,
2006
, “
Effect of Long-Term Mild Hypothermia or Short-Term Mild Hypothermia on Outcome of Patients With Severe Traumatic Brain Injury
,”
J. Cerebral Blood Flow Metabol.
,
26
(
6
), pp.
771
776
.10.1038/sj.jcbfm.9600253
15.
Schubert
,
A.
,
1995
, “
Side Effects of Mild Hypothermia
,”
J. Neurosurg. Anesthesiol.
,
7
(
2
), pp.
139
147
.10.1097/00008506-199504000-00021
16.
McCullough
,
L.
, and
Arora
,
S.
,
2004
, “
Diagnosis and Treatment of Hypothermia
,”
Am. Family Phys.
,
70
(
12
), pp.
2325
2332
.https://pubmed.ncbi.nlm.nih.gov/15617296/
17.
Clifton
,
G. L.
,
Allen
,
S.
,
Barrodale
,
P.
,
Plenger
,
P.
,
Berry
,
J.
,
Koch
,
S.
,
Fletcher
,
J.
,
Hayes
,
R. L.
, and
Choi
,
S. C.
,
1993
, “
A Phase II Study of Moderate Hypothermia in Severe Brain Injury
,”
J. Neurotrauma
,
10
(
3
), pp.
263
271
.10.1089/neu.1993.10.263
18.
Alam
,
H. B.
,
Chen
,
Z.
,
Li
,
Y.
,
Velmahos
,
G.
,
DeMoya
,
M.
,
Keller
,
C. E.
,
Toruno
,
K.
,
Mehrani
,
T.
,
Rhee
,
P.
, and
Spaniolas
,
K.
,
2006
, “
Profound Hypothermia is Superior to Ultraprofound Hypothermia in Improving Survival in a Swine Model of Lethal Injuries
,”
Surgery
,
140
(
2
), pp.
307
314
.10.1016/j.surg.2006.03.015
19.
de Caen
,
A.
,
2002
, “
Management of Profound Hypothermia in Children Without the Use of Extracorporeal Life Support Therapy
,”
Lancet
,
360
(
9343
), pp.
1394
1395
.10.1016/S0140-6736(02)11392-4
20.
Shragge
,
B. W.
,
Digerness
,
S. B.
, and
Blackstone
,
E. H.
,
1981
, “
Complete Recovery of the Heart Following Exposure to Profound Hypothermia
,”
J. Thorac. Cardiovasc. Surg.
,
81
(
3
), pp.
455
458
.10.1016/S0022-5223(19)37614-7
21.
Molina
,
J. E.
,
Einzig
,
S.
,
Mastri
,
A. R.
,
Bianco
,
R. W.
,
Marks
,
J. A.
,
Rasmussen
,
T. M.
, and
Clack
,
R. M.
,
1984
, “
Brain Damage in Profound Hypothermia: Perfusion Versus Circulatory Arrest
,”
J. Thorac. Cardiovasc. Surg.
,
87
(
4
), pp.
596
604
.10.1016/S0022-5223(19)37363-5
22.
Hassi
,
J.
,
Rytkönen
,
M.
,
Kotaniemi
,
J.
, and
Rintamäki
,
H.
,
2005
, “
Impacts of Cold Climate on Human Heat Balance, Performance and Health in Circumpolar Areas
,”
Int. J. Circumpolar Health
,
64
(
5
), pp.
459
467
.10.3402/ijch.v64i5.18027
23.
Haigh
,
J. C.
,
2013
, “
Fieldwork in a Cold Climate
,”
J. Exotic Pet. Med.
,
22
(
1
), pp.
51
57
.10.1053/j.jepm.2012.12.008
24.
Xu
,
X.
,
Tikuisis
,
P.
,
Gonzalez
,
R.
, and
Giesbrecht
,
G.
,
2005
, “
Thermoregulatory Model for Prediction of Long-Term Cold Exposure
,”
Comput. Biol. Med.
,
35
(
4
), pp.
287
298
.10.1016/j.compbiomed.2004.01.004
25.
Kang
,
Z.
,
Wang
,
F.
, and
Udayraj
,
2019
, “
An Advanced Three-Dimensional Thermoregulation Model of the Human Body: Development and Validation
,”
Int. Commu. Heat Mass Transfer
,
107
, pp.
34
43
.10.1016/j.icheatmasstransfer.2019.05.006
26.
Xu
,
X.
, and
Tikuisis
,
P.
,
2014
, “
Thermoregulatory Modeling for Cold Stress
,”
Comp. Physiol.
,
4
(
3
), pp.
1057
1081
.10.1002/cphy.c130047
27.
Wu
,
J.
,
Hu
,
Z.
,
Gu
,
Y.
,
Li
,
L.
, and
Zhu
,
H.
,
2022
, “
A Multi-Segmented Human Bioheat Model for Cold and Extremely Cold Exposures
,”
Int. J. Therm. Sci.
,
173
, p.
107394
.10.1016/j.ijthermalsci.2021.107394
28.
Tikuisis
,
P.
,
1989
, “
Prediction of the Thermoregulatory Response for Clothed Immersion in Cold Water
,”
Eur. J Appl. Physiol. Occup. Physiol.
,
59
(
5
), pp.
334
341
.10.1007/BF02389807
29.
Sessler
,
D. I.
,
Moayeri
,
A.
,
Stoen
,
R.
,
Glosten
,
B.
,
Hynson
,
J.
, and
McGuire
,
J.
,
1990
, “
Thermoregulatory Vasoconstriction Decreases Cutaneous Heat Loss
,”
Anesthesiology
,
73
(
4
), pp.
656
660
.10.1097/00000542-199010000-00011
30.
Kellogg
,
D. L.
, Jr.
,
2006
, “
In Vivo Mechanisms of Cutaneous Vasodilation and Vasoconstriction in Humans During Thermoregulatory Challenges
,”
J Appl. Physiol.
,
100
(
5
), pp.
1709
1718
.10.1152/japplphysiol.01071.2005
31.
Cain
,
J. B.
,
Livingstone
,
S. D.
,
Nolan
,
R. W.
, and
Keefe
,
A. A.
,
1990
, “
Respiratory Heat Loss During Work at Various Ambient Temperatures
,”
Respiration Physiol.
,
79
(
2
), pp.
145
150
.10.1016/0034-5687(90)90014-P
32.
Leibsohn
,
E.
,
Appel
,
B.
,
Ullrick
,
W. G.
, and
Tye
,
M. J.
,
1958
, “
Respiration of Human Skin: Normal Values, Pathological Changes and Effect of Certain Agents on Oxygen Uptake
,”
J. Invest. Dermatol.
,
30
(
1
), pp.
1
8
.10.1038/jid.1958.1
33.
Ducharme
,
M. B.
,
Tikuisis
,
P.
, and
Potter
,
P.
,
2004
, “
Selection of Military Survival Gears Using Thermal Manikin and Computer Survival Model Data
,”
Eur. J Appl. Physiol.
,
92
(
6
), pp.
658
662
.10.1007/s00421-004-1140-3
34.
Tikuisis
,
P.
,
1994
, “
Prediction of Survival Time for Cold Exposure
,”
Sixth International Conference on Environmental Ergonomics. Montebello
,
Gmada
, Sept. 25–30, pp. 160–161.
35.
Tikuisis
,
P.
,
1995
, “
Predicting Survival Time for Cold Exposure
,”
Int. J Biometeorol.
,
39
(
2
), pp.
94
102
.10.1007/BF01212587
36.
Tarlochan
,
F.
, and
Ramesh
,
S.
,
2005
, “
Heat Transfer Model for Predicting Survival Time in Cold Water Immersion
,”
Biomed. Eng.
,
17
(
4
), pp.
159
166
.10.4015/S1016237205000251
37.
Dombrovsky
,
L. A.
,
2022
, “
Laser-Induced Thermal Treatment of Superficial Human Tumors: An Advanced Heating Strategy and Non-Arrhenius Law for Living Tissues
,”
Front. Therm. Eng.
,
1
, pp.
1
8
.
38.
Williams
,
J. T.
, ed.,
2009
,
Textiles for Cold Weather Apparel
,
Elsevier
, Amsterdam, The Netherlands.
39.
Kim
,
E. B.
, and
Park
,
J. K.
,
2014
, “
Proposal for a Heat Balance Model Tailored to the Korean Peninsula
,”
Asia-Pacific J. Atmos. Sci.
,
50
(
S1
), pp.
657
667
.10.1007/s13143-014-0053-2
40.
Ghazy
,
A.
, and
Bergstrom
,
D. J.
,
2010
, “
Numerical Simulation of Transient Heat Transfer in a Protective Clothing System During a Flash Fire Exposure
,”
Numer. Heat Transfer, Part A Appl.
,
58
(
9
), pp.
702
724
.10.1080/10407782.2010.516691
41.
Dupade
,
V.
,
Premachandran
,
B.
,
Rengasamy
,
R. S.
, and
Talukdar
,
P.
,
2022
, “
Estimation of Temperature-Dependent Effective Thermal Conductivity and Specific Heat of Thermally Bonded High Bulk Nonwoven Exposed to Sub-Zero Temperature
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
6
), p.
061014
.10.1115/1.4053692
42.
Gnanauthayan
,
G.
,
Rengasamy
,
R. S.
, and
Kothari
,
V.
,
2018
, “
Heat Insulation Characteristics of Multi-Layer Nonwovens
,”
Res. J. Text. Apparel
,
22
(
2
), pp.
94
108
.10.1108/RJTA-06-2017-0028
43.
Timbal
,
J.
,
Boutelier
,
C.
,
Loncle
,
M.
, and
Bougues
,
L.
,
1976
, “
Comparison of Shivering in Man Exposed to Cold in Water and in Air
,”
Pflügers Arch.
,
365
(
2–3
), pp.
243
248
.10.1007/BF01067024
44.
Strong
,
L. H.
,
Gee
,
G. K.
, and
Goldman
,
R. F.
,
1985
, “
Metabolic and Vasomotor Insulative Responses Occurring on Immersion in Cold Water
,”
J. Appl. Physiol.
,
58
(
3
), pp.
964
977
.10.1152/jappl.1985.58.3.964
45.
Hayward
,
J. S.
,
Eckerson
,
J. D.
, and
Collis
,
M. L.
,
1977
, “
Thermoregulatory Heat Production in Man: Prediction Equation Based on Skin and Core Temperatures
,”
J. Appl. Physiol.
,
42
(
3
), pp.
377
384
.10.1152/jappl.1977.42.3.377
46.
Tikuisis
,
P.
, and
Giesbrecht
,
G. G.
,
1999
, “
Prediction of Shivering Heat Production From Core and Mean Skin Temperatures
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
79
(
3
), pp.
221
229
.10.1007/s004210050499
47.
Chen
,
W. A. N. G.
,
Xu-Hong
,
H.
,
Zhang
,
M. L.
,
Yu-Qian
,
B.
,
Yu-Hua
,
Z.
,
Zhong
,
W. H.
,
Xiang
,
K. S.
, and
Wei-Ping
,
J.
,
2010
, “
Comparison of Body Mass Index With Body Fat Percentage in the Evaluation of Obesity in Chinese
,”
Biomed. Environ. Sci.
,
23
(
3
), pp.
173
179
.10.1016/S0895-3988(10)60049-9
48.
Defraeye
,
T.
,
Blocken
,
B.
, and
Carmeliet
,
J.
,
2011
, “
Convective Heat Transfer Coefficients for Exterior Building Surfaces: Existing Correlations and CFD Modelling
,”
Energy Convers. Manage.
,
52
(
1
), pp.
512
522
.10.1016/j.enconman.2010.07.026
49.
Mirsadeghi
,
M.
,
Costola
,
D.
,
Blocken
,
B.
, and
Hensen
,
J. L.
,
2013
, “
Review of External Convective Heat Transfer Coefficient Models in Building Energy Simulation Programs: Implementation and Uncertainty
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
134
151
.10.1016/j.applthermaleng.2013.03.003
50.
Dombrovsky
,
L. A.
,
Kokhanovsky
,
A. A.
, and
Randrianalisoa
,
J. H.
,
2019
, “
On Snowpack Heating by Solar Radiation: A Computational Model
,”
J. Quant. Spectrosc. Radiat. Transfer
,
227
, pp.
72
85
.10.1016/j.jqsrt.2019.02.004
51.
Dombrovsky
,
L. A.
, and
Kokhanovsky
,
A. A.
,
2022
, “
Deep Heating of a Snowpack by Solar Radiation
,”
Front. Therm. Eng.
,
2
, p.
882941
.10.3389/fther.2022.882941
You do not currently have access to this content.