Abstract

In many important combustion applications, heat transfer is dominated by thermal radiation from combustion gases and soot. Thermal radiation from combustion gases is extremely complicated, and accurate and efficient predictions are only now becoming possible with the use of accurate global methods, such as full-spectrum k-distributions, and with state-of-the-art line-by-line accurate Monte Carlo methods. The coupling between turbulence and radiation can more than double the radiative loss from a flame, while making theoretical predictions vastly more complicated. This paper is an embellished version of the 2021 Max Jakob Award lecture: Radiative properties and computational methods will be briefly discussed, and several examples of turbulent reacting flows, an oxy-fuel furnace, and high-pressure fuel sprays in combustion engines will be presented. Thermal radiation can also be used as an optical diagnostic tool to determine temperature and concentration distributions, which will be briefly discussed.

References

1.
Modest
,
M. F.
, and
Mazumder
,
S.
,
2021
,
Radiative Heat Transfer
, 4th ed.,
Academic Press
,
New York
.
2.
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2016
,
Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications
,
Springer
,
Cham, Switzerland
.
3.
Edwards
,
D. K.
,
1976
, “
Molecular Gas Band Radiation
,”
Adv. Heat Transfer
,
12
, pp.
115
193
.10.1016/S0065-2717(08)70163-1
4.
Howell
,
J. R.
,
Mengüç
,
M. P.
,
Daun
,
K.
, and
Siegel
,
R.
,
2020
,
Thermal Radiation Heat Transfer
, 7th ed.,
CRC Press
,
Washington, DC
.
5.
Dombrovsky
,
L. A.
,
Sazhin
,
S. S.
,
Mikhalovsky
,
S. V.
,
Wood
,
R.
, and
Heikal
,
M. R.
,
2003
, “
Spectral Properties of Diesel Fuel Droplets
,”
Fuel
,
82
(
1
), pp.
15
22
.10.1016/S0016-2361(02)00200-4
6.
McClatchey
,
R. A.
,
Benedict
,
W. S.
,
Clough
,
S. A.
,
Burch
,
D. E.
,
Fox
,
K.
,
Rothman
,
L. S.
, and
Garing
,
J. S.
,
1973
, “
AFCRL Atmospheric Absorption Line Parameters Compilation
,” U.S. Air Force port, Technical Report No. AFCRL-TR-0096.
7.
Rothman
,
L. S.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Brown
,
L. R.
,
Toth
,
R. A.
,
Pickett
,
H. M.
, and
Poynter
,
R. L.
, et al.,
1987
, “
The HITRAN Database: 1986 Edition
,”
Appl. Opt.
,
26
(
19
), pp.
4058
4097
.10.1364/AO.26.004058
8.
Gordon
,
I. E.
,
Rothman
,
L. S.
,
Hargreaves
,
R. J.
,
Hashemi
,
R.
,
Karlovets
,
E. V.
,
Skinner
,
F. M.
, and
Conway
,
E. K.
, et al.,
2022
, “
The HITRAN 2020 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
277
, p.
107949
.10.1016/j.jqsrt.2021.107949
9.
Rothman
,
L. S.
,
Wattson
,
R. B.
,
Gamache
,
R. R.
,
Schroeder
,
J.
, and
McCann
,
A.
,
1995
, “
HITRAN, HAWKS and HITEMP High Temperature Databases
,”
Proc. SPIE
2471
, pp.
105
111
.10.1117/12.211919
10.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Barber
,
R. J.
,
Dothe
,
H.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Perevalov
,
V. I.
,
Tashkun
,
S. A.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
15
), pp.
2139
2150
.10.1016/j.jqsrt.2010.05.001
11.
Tashkun
,
S. A.
, and
Perevalov
,
V. I.
,
2008
, “
Carbon Dioxide Spectroscopic Databank (CDSD): Updated and Enlarged Version for Atmospheric Applications
,”
Tenth HITRAN Conference
,
Cambridge, MA
, June 22–24, Paper No. T2.3.
12.
Barber
,
R. J.
,
Tennyson
,
J.
,
Harris
,
G. J.
, and
Tolchenov
,
R. N.
,
2006
, “
A High-Accuracy Computed Water Line List
,”
Mon. Not. R. Astron. Soc.
,
368
(
3
), pp.
1087
1094
.10.1111/j.1365-2966.2006.10184.x
13.
Hottel
,
H. C.
, and
Sarofim
,
A. F.
,
1967
,
Radiative Transfer
,
McGraw-Hill
,
New York
.
14.
Truelove
,
J. S.
,
1975
, “
The Zone Method for Radiative Heat Transfer Calculations in Cylindrical Geometries
,”
Atomic Energy Authority
,
Harwell, UK
, HTFS Design Report No. DR33 (Part I: AERE-R8167).
15.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
,
1982
, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
104
(
4
), pp.
602
608
.10.1115/1.3245174
16.
Modest
,
M. F.
,
1991
, “
The Weighted-Sum-of-Gray-Gases Model for Arbitrary Solution Methods in Radiative Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
113
(
3
), pp.
650
656
.10.1115/1.2910614
17.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
A Spectral Line Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
115
(
4
), pp.
1004
1012
.10.1115/1.2911354
18.
Modest
,
M. F.
, and
Zhang
,
H.
,
2002
, “
The Full-Spectrum Correlated-k Distribution for Thermal Radiation From Molecular Gas–Particulate Mixtures
,”
ASME J. Heat MassTransfer-Trans. ASME
,
124
(
1
), pp.
30
38
.10.1115/1.1418697
19.
Kangwanpongpan
,
T.
,
França
,
F. H. R.
,
da Silva
,
R. C.
,
Schneider
,
P. S.
, and
Krautz
,
H. J.
,
2012
, “
New Correlations for the Weighted-Sum-of-Gray-Gases Model in Oxy-Fuel Conditions Based on HITEMP 2010 Database
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7419
7433
.10.1016/j.ijheatmasstransfer.2012.07.032
20.
Bordbar
,
M. H.
,
Węcel
,
G.
, and
Hyppänen
,
T.
,
2014
, “
A Line by Line Based Weighted Sum of Gray Gases Model for Inhomogeneous CO2–H2O Mixture in Oxy-Fired Combustion
,”
Combust. Flame
,
161
(
9
), pp.
2435
2445
.10.1016/j.combustflame.2014.03.013
21.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
An Absorption-Line Blackbody Distribution Function for Efficient Calculation of Total Gas Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
50
(
5
), pp.
499
510
.10.1016/0022-4073(93)90043-H
22.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1995
, “
The Spectral-Line-Based Weighted-Sum-of-Gray-Gases Model in Nonisothermal Nonhomogeneous Media
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
2
), pp.
359
365
.10.1115/1.2822530
23.
Modest
,
M. F.
,
2003
, “
Narrow-Band and Full-Spectrum k-Distributions for Radiative Heat Transfer—Correlated-k vs. Scaling Approximation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
76
(
1
), pp.
69
83
.10.1016/S0022-4073(02)00046-8
24.
Solovjov
,
V. P.
,
André
,
F.
,
Lemonnier
,
D.
, and
Webb
,
B. W.
,
2017
, “
The Rank Correlated SLW Model of Gas Radiation in Non-Uniform Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
197
, pp.
26
44
.10.1016/j.jqsrt.2017.01.034
25.
Arking
,
A.
, and
Grossman
,
K.
,
1972
, “
The Influence of Line Shape and Band Structure on Temperatures in Planetary Atmospheres
,”
J. Atmos. Sci.
,
29
(
5
), pp.
937
949
.10.1175/1520-0469(1972)029<0937:TIOLSA>2.0.CO;2
26.
Cai
,
J.
, and
Modest
,
M. F.
,
2014
, “
Improved Full-Spectrum k-Distribution Implementation for Inhomogeneous Media Using a Narrow-Band Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
141
, pp.
65
72
.10.1016/j.jqsrt.2014.02.028
27.
Wang
,
C.
,
Modest
,
M. F.
,
Ren
,
T.
,
Cai
,
J.
, and
He
,
B.
,
2021
, “
Comparison and Refinement of the Various Full-Spectrum k-Distribution and Spectral-Line-Based-Weighted-Sum-of-Gray-Gases Models for Nonhomogeneous Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
271
, p.
107695
.10.1016/j.jqsrt.2021.107695
28.
Wang
,
A.
,
Modest
,
M. F.
,
Haworth
,
D. C.
, and
Wang
,
L.
,
2008
, “
Monte Carlo Simulation of Radiative Heat Transfer and Turbulence Interactions in Methane/Air Jet Flames
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
2
), pp.
269
279
.10.1016/j.jqsrt.2007.08.030
29.
Pal
,
G.
,
Gupta
,
A.
,
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2011
, “
Comparison of Accuracy and Computational Expense of Radiation Models in Simulation of Nonpremixed Turbulent Jet Flames
,”
ASME
/JSME Paper No. AJTEC2011-44585.
30.
Pal
,
G.
,
Gupta
,
A.
,
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2015
, “
Comparison of Accuracy and Computational Expense of Radiation Models in Simulation of Nonpremixed Turbulent Jet Flames
,”
Combust. Flame
,
162
(
6
), pp.
2487
2495
.10.1016/j.combustflame.2015.02.017
31.
Ge
,
W.
,
Marquez
,
R.
,
Modest
,
M. F.
, and
Roy
,
S. P.
,
2015
, “
Implementation of High Order Spherical Harmonics Methods for Radiative Heat Transfer on OpenFOAM
,”
ASME J. Heat MassTransfer-Trans. ASME
,
137
(
5
), p.
052701
.10.1115/1.4029546
32.
Ge
,
W.
,
Modest
,
M. F.
, and
Marquez
,
R.
,
2015
, “
Two-Dimensional Axisymmetric Formulation of High Order Spherical Harmonics Methods for Radiative Heat Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
156
, pp.
58
66
.10.1016/j.jqsrt.2015.01.013
33.
David
,
C.
,
Ge
,
W.
,
Roy
,
S. P.
,
Modest
,
M. F.
, and
Sankaran
,
R.
,
2021
, “
Comparison of Radiation Models for a Turbulent Piloted Methane/Air Jet Flame: A Frozen-Field Study
,”
ASME Paper No. HT2021-62417
.10.1115/HT2021-62417
34.
Ge
,
W.
,
David
,
C.
,
Modest
,
M. F.
,
Sankaran
,
R.
, and Roy, S. P.,
2022
, “
Comparison of Spherical Harmonics Method and Discrete Ordinates Method for Radiative Transfer in a Turbulent Jet Flame
,”
J. Quant. Spectrosc. Radiat. Transfer
(submitted).10.1016/j.jqsrt.2022.108459
35.
Barlow
,
R. S.
, “
International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames (TNF)
,” accessed Dec. 13, 2022, https://tnfworkshop.org
36.
Fleck
,
J. A.
,
1961
, “
The Calculation of Nonlinear Radiation Transport by a Monte Carlo Method: Statistical Physics
,”
Methods Comput. Phys.
,
1
, pp.
43
65
.
37.
Howell
,
J. R.
, and
Perlmutter
,
M.
,
1964
, “
Monte Carlo Solution of Thermal Transfer Through Radiant Media Between Gray Walls
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
86
(
1
), pp.
116
122
.10.1115/1.3687044
38.
Howell
,
J. R.
, and
Perlmutter
,
M.
,
1964
, “
Monte Carlo Solution of Thermal Transfer in a Nongrey Nonisothermal Gas With Temperature Dependent Properties
,”
AIChE J.
,
10
(
4
), pp.
562
567
.10.1002/aic.690100429
39.
Wang
,
A.
, and
Modest
,
M. F.
,
2007
, “
Spectral Monte Carlo Models for Nongray Radiation Analyses in Inhomogeneous Participating Media
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3877
3889
.10.1016/j.ijheatmasstransfer.2007.02.018
40.
Ozawa
,
T.
,
Modest
,
M. F.
, and
Levin
,
D. A.
,
2010
, “
Spectral Module for Photon Monte Carlo Calculations in Hypersonic Nonequilibrium Radiation
,”
ASME J. Heat MassTransfer-Trans. ASME
,
132
, p.
023406
.10.1115/1.4000242
41.
Feldick
,
A. M.
, and
Modest
,
M. F.
,
2011
, “
An Improved Wavelength Selection Scheme for Monte Carlo Solvers Applied to Hypersonic Plasmas
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
8
), pp.
1394
1401
.10.1016/j.jqsrt.2011.01.028
42.
Ren
,
T.
, and
Modest
,
M. F.
,
2013
, “
Hybrid Wavenumber Selection Scheme for Line-by-Line Photon Monte Carlo Simulations in High-Temperature Gases
,”
ASME J. Heat MassTransfer-Trans. ASME
,
135
(
8
), p.
084501
.10.1115/1.4024385
43.
Ren
,
T.
, and
Modest
,
M. F.
,
2019
, “
Line-by-Line Random-Number Database for Photon Monte Carlo Simulations of Radiation in Participating Media
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
2
), p.
022701
.10.1115/1.4041803
44.
Wang
,
A.
, and
Modest
,
M. F.
,
2006
, “
Photon Monte Carlo Simulation for Radiative Transfer in Gaseous Media Represented by Discrete Particle Fields
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
128
(
10
), pp.
1041
1049
.10.1115/1.2345431
45.
Wang
,
A.
, and
Modest
,
M. F.
,
2007
, “
An Adaptive Emission Model for Monte Carlo Ray-Tracing in Participating Media Represented by Statistical Particle Fields
,”
J. Quant. Spectrosc. Radiat. Transfer
,
104
(
2
), pp.
288
296
.10.1016/j.jqsrt.2006.07.023
46.
Gupta
,
A.
,
Haworth
,
D. C.
, and
Modest
,
M. F.
,
2013
, “
Turbulence–Radiation Interactions in Large-Eddy Simulations of Luminous and Nonluminous Nonpremixed Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1281
1288
.10.1016/j.proci.2012.05.052
47.
Marquez
,
R.
,
Modest
,
M. F.
, and
Cai
,
J.
,
2015
, “
Spectral Photon Monte Carlo With Energy Splitting Across Phases for Gas-Particle Mixtures
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
137
, p.
121012
.10.1115/1.4030959
48.
Roy
,
S. P.
,
Cai
,
J.
, and
Modest
,
M. F.
,
2017
, “
Development of a Multiphase Photon Monte Carlo Method for Spray Combustion and Its Application in High-Pressure Conditions
,”
Int. J. Heat Mass Transfer
,
115
(
Part A
), pp.
453
466
.10.1016/j.ijheatmasstransfer.2017.07.046
49.
Townsend
,
A. A.
,
1958
, “
The Effects of Radiative Transfer on Turbulent Flow of a Stratified Fluid
,”
J. Fluid Mech.
,
4
(
4
), pp.
361
375
.10.1017/S0022112058000501
50.
Shved
,
G. M.
, and
Akmayev
,
R. A.
,
1977
, “
Influence of Radiative Heat Transfer on Turbulence in Planetary Atmospheres
,”
Atmos. Oceanic Phys.
,
34
, pp.
1286
1401
.
51.
Song
,
T. H.
, and
Viskanta
,
R.
,
1987
, “
Interaction of Radiation With Turbulence: Application to a Combustion System
,”
J. Thermophys. Heat Transfer
,
1
(
1
), pp.
56
62
.10.2514/3.7
52.
Soufiani
,
A.
,
Mignon
,
P.
, and
Taine
,
J.
,
1990
, “
Radiation–Turbulence Interaction in Channel Flows of Infrared Active Gases
,”
Proceedings of the Ninth International Heat Transfer Conference
, Jerusalem, Israel, Aug. 19–24, Vol.
6
, pp.
403
408
.
53.
Hall
,
R. J.
, and
Vranos
,
A.
,
1994
, “
Efficient Calculations of Gas Radiation From Turbulent Flames
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2745
2750
.10.1016/0017-9310(94)90391-3
54.
Gore
,
J. P.
, and
Faeth
,
G. M.
,
1988
, “
Structure and Spectral Radiation Properties of Turbulent Ethylene/Air Diffusion Flames
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
1521
1531
.10.1016/S0082-0784(88)80385-0
55.
Gore
,
J. P.
,
Jeng
,
S. M.
, and
Faeth
,
G. M.
,
1987
, “
Spectral and Total Radiation Properties of Turbulent Carbon Monoxide/Air Diffusion Flames
,”
AIAA J.
,
25
(
2
), pp.
339
345
.10.2514/3.9627
56.
Gore
,
J. P.
,
Jeng
,
S. M.
, and
Faeth
,
G. M.
,
1987
, “
Spectral and Total Radiation Properties of Turbulent Hydrogen/Air Diffusion Flames
,”
ASME J. Heat MassTransfer-Trans. ASME
,
109
(
1
), pp.
165
171
.10.1115/1.3248038
57.
Gore
,
J. P.
, and
Faeth
,
G. M.
,
1988
, “
Structure and Spectral Radiation Properties of Luminous Acetylene/Air Diffusion Flames
,”
ASME J. Heat MassTransfer-Trans. ASME
,
110
(
1
), pp.
173
181
.10.1115/1.3250449
58.
Kounalakis
,
M. E.
,
Gore
,
J. P.
, and
Faeth
,
G. M.
,
1989
, “
Turbulence/Radiation Interactions in Nonpremixed Hydrogen/Air Flames
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
1281
1290
.10.1016/S0082-0784(89)80139-0
59.
Kounalakis
,
M. E.
,
Gore
,
J. P.
, and
Faeth
,
G. M.
,
1989
, “
Mean and Fluctuating Radiation Properties of Nonpremixed Turbulent Carbon Monoxide/Air Flames
,”
ASME J. Heat MassTransfer-Trans. ASME
,
111
(
4
), pp.
1021
1030
.10.1115/1.3250763
60.
Kounalakis
,
M. E.
,
Sivathanu
,
Y. R.
, and
Faeth
,
G. M.
,
1991
, “
Infrared Radiation Statistics of Nonluminous Turbulent Diffusion Flames
,”
ASME J. Heat MassTransfer-Trans. ASME
,
113
(
2
), pp.
437
445
.10.1115/1.2910580
61.
Mazumder
,
S.
, and
Modest
,
M. F.
,
1999
, “
A PDF Approach to Modeling Turbulence–Radiation Interactions in Nonluminous Flames
,”
Int. J. Heat Mass Transfer
,
42
(
6
), pp.
971
991
.10.1016/S0017-9310(98)00225-7
62.
Li
,
G.
, and
Modest
,
M. F.
,
2002
, “
Application of Composition PDF Methods in the Investigation of Turbulence–Radiation Interactions
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
(
2–5
), pp.
461
472
.10.1016/S0022-4073(01)00218-7
63.
Li
,
G.
, and
Modest
,
M. F.
,
2003
, “
Importance of Turbulence–Radiation Interactions in Turbulent Diffusion Jet Flames
,”
ASME J. Heat MassTransfer-Trans. ASME
,
125
(
5
), pp.
831
838
.10.1115/1.1597621
64.
Li
,
G.
, and
Modest
,
M. F.
,
2005
, “
Numerical Simulation of Turbulence–Radiation Interactions in Turbulent Reacting Flows
,”
Modelling and Simulation of Turbulent Heat Transfer
,
B.
Sundeń
, and
M.
Faghri
, eds.,
WIT Press
,
Southampton, UK
, pp.
77
112
.
65.
Coelho
,
P. J.
,
2007
, “
Numerical Simulation of the Interaction Between Turbulence and Radiation in Reactive Flows
,”
Prog. Energy Combust. Sci.
,
33
(
4
), pp.
311
383
.10.1016/j.pecs.2006.11.002
66.
Kabashinikov
,
V. P.
, and
Myasnikova
,
G. I.
,
1985
, “
Thermal Radiation in Turbulent Flows—Temperature and Concentration Fluctuations
,”
Heat Transfer-Sov. Res.
,
17
(
6
), pp.
116
125
.
67.
Modest
,
M. F.
,
2006
, “
Radiative Heat Transfer in Fire Modeling
,”
Transport Phenomena in Fires, Developments in Heat Transfer
,
B.
Sundeń
, and
M.
Faghri
, eds.,
WIT Press
,
Southampton, UK
.
68.
Pope
,
S. B.
,
1985
, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
,
11
(
2
), pp.
119
192
.10.1016/0360-1285(85)90002-4
69.
Haworth
,
D. C.
,
2010
, “
Progress in Probability Density Function Methods for Turbulent Reacting Flows
,”
Prog. Energy Combust. Sci.
,
36
(
2
), pp.
168
259
.10.1016/j.pecs.2009.09.003
70.
Tessé
,
L.
,
Dupoirieux
,
F.
, and
Taine
,
J.
,
2004
, “
Monte Carlo Modeling of Radiative Transfer in a Turbulent Sooty Flame
,”
Int. J. Heat Mass Transfer
,
47
(
3
), pp.
555
572
.10.1016/j.ijheatmasstransfer.2003.06.003
71.
Jasak
,
H.
,
Jemcov
,
A.
, and
Tukovic
,
Z.
,
2007
, “
OpenFOAM: A C++ Library for Complex Physics Simulations
,”
International Workshop on Coupled Methods in Numerical Dynamics
,
IUC
,
Dubrovnik, Croatia
, Sept. 19–21, pp.
1
20
.
72.
Tang
,
Q.
,
Xu
,
J.
, and
Pope
,
S. B.
,
2000
, “
Probability Density Function Calculations of Local Extinction and no Production in Piloted-Jet Turbulent Methane/Air Flames
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
133
139
.10.1016/S0082-0784(00)80204-0
73.
Zhao
,
X. Y.
,
Haworth
,
D. C.
,
Ren
,
T.
, and
Modest
,
M. F.
,
2013
, “
A Transported Probability Density Function/Photon Monte Carlo Method for High-Temperature Oxy–Natural Gas Combustion With Spectral Gas and Wall Radiation
,”
Combust. Theory Modell.
,
17
(
2
), pp.
354
381
.10.1080/13647830.2013.766365
74.
Lallemant
,
N.
,
Dugue
,
J.
, and
Weber
,
R.
,
2003
, “
Measurement Techniques for Studying Oxy-Natural Gas Flames
,”
J. Inst. Energy
,
76
, pp.
38
53
.
75.
Bowman
,
C. T.
,
Hanson
,
R.
,
Davidson
,
D. F.
,
Gardiner
,
W. C.
,
Lissianski
,
V.
,
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
, and
Goldenberg
,
M.
,
1995
, “
GRI-Mech 2.11
,” accessed Dec. 13, 2022, http://combustion.berkeley.edu/gri-mech
76.
Paul
,
C.
,
Fernandez
,
S. F.
,
Haworth
,
D. C.
,
Roy
,
S.
, and
Modest
,
M. F.
,
2019
, “
A Detailed Modeling Study of Radiative Heat Transfer in a Heavy-Duty Diesel Engine
,”
Combust. Flame
,
200
, pp.
325
341
.10.1016/j.combustflame.2018.11.032
77.
França
,
F. H. R.
,
Howell
,
J. R.
,
Ezekoye
,
O. A.
, and
Morales
,
J. C.
,
2002
, “
Inverse Design of Thermal Systems
,”
Advances in Heat Transfer
, Vol.
36
,
Elsevier
,
New York
, pp.
1
110
.
78.
Daun
,
K. J.
, and
Howell
,
J. R.
,
2005
, “
Inverse Design Methods for Radiative Transfer Systems
,”
J. Quant. Spectrosc. Radiat. Transfer
,
93
(
1–3
), pp.
43
60
.10.1016/j.jqsrt.2004.08.012
79.
Daun
,
K. J.
,
França
,
F. H. R.
,
Larsen
,
M. E.
,
Leduc
,
G.
, and
Howell
,
J. R.
,
2006
, “
Comparison of Methods for Inverse Design of Radiant Enclosures
,”
ASME J. Heat Transfer-Trans. ASME
, 128(3), pp. 269–282.10.1115/1.2151198
80.
Charette
,
A.
,
Boulanger
,
J.
, and
Kim
,
H. K.
,
2008
, “
An Overview on Recent Radiation Transport Algorithm Development for Optical Tomography Imaging
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
17–18
), pp.
2743
2766
.10.1016/j.jqsrt.2008.06.007
81.
Daun
,
K. J.
,
2017
, “
Inverse Problems in Radiative Transfer
,”
Handbook of Thermal Science and Engineering
,
F.
Kulacki
, ed.,
Springer International Publishing
, Berlin, pp.
1
51
.
82.
Ren
,
T.
, and
Modest
,
M. F.
,
2016
, “
Temperature Profile Inversion From Carbon-Dioxide Spectral Intensities Through Tikhonov Regularization
,”
J. Thermophys. Heat Transfer
,
30
(
1
), pp.
211
218
.10.2514/1.T4561
83.
Scafati
,
F. T.
,
Lavorgna
,
M.
,
Mancaruso
,
E.
, and
Vaglieco
,
B. M.
,
2018
, “
Artificial Intelligence for Modeling and Control of Nonlinear Phenomena in Internal Combustion Engines
,”
Nonlinear Systems and Circuits in Internal Combustion Engines
,
Springer
,
Cham, Switzerland
, pp.
1
19
.
84.
Gurney
,
K.
,
2014
,
An Introduction to Neural Networks
,
CRC Press
, Boca Raton, FL.
85.
Deo
,
R. C.
,
Ghorbani
,
M. A.
,
Samadianfard
,
S.
,
Maraseni
,
T.
,
Bilgili
,
M.
, and
Biazar
,
M.
,
2018
, “
Multi-Layer Perceptron Hybrid Model Integrated With the Firefly Optimizer Algorithm for Windspeed Prediction of Target Site Using a Limited Set of Neighboring Reference Station Data
,”
Renewable Energy
,
116
, pp.
309
323
.10.1016/j.renene.2017.09.078
86.
Ren
,
T.
,
Modest
,
M. F.
,
Fateev
,
A.
,
Sutton
,
G.
,
Zhao
,
W.
, and
Rusu
,
F.
,
2019
, “
Machine Learning Applied to Retrieval of Temperature and Concentration Distributions From Infrared Emission Measurements
,”
Appl. Energy
,
252
, p.
113448
.10.1016/j.apenergy.2019.113448
87.
Sutton
,
G.
,
Fateev
,
A.
,
Rodríguez-Conejo
,
M. A.
,
Meléndez
,
J.
, and
Guarnizo
,
G.
,
2019
, “
Validation of Emission Spectroscopy Gas Temperature Measurements Using a Standard Flame Traceable to the International Temperature Scale of 1990 (ITS-90)
,”
Int. J. Thermophys.
,
40
, p.
99
.10.1007/s10765-019-2557-6
88.
NPL
, “
Temperature Measurements
,” National Metrology Institute of the UK, NPL Temperature Measurements, http://www.npl.co.uk/temperature-humidity/products-services/portable-standard-flame
89.
Ren
,
T.
,
Li
,
H.
,
Modest
,
M. F.
, and
Zhao
,
C.
,
2021
, “
Efficient Two-Dimensional Scalar Fields Reconstruction of Laminar Flames From Infrared Hyperspectral Measurements With a Machine Learning Approach
,”
J. Quant. Spectrosc. Radiat. Transfer
,
271
, p.
107724
.10.1016/j.jqsrt.2021.107724
90.
Ren
,
T.
,
Li
,
H.
,
Modest
,
M. F.
, and
Zhao
,
C.
,
2022
, “
Machine Learning Applied to the Retrieval of Three-Dimensional Scalar Fields of Laminar Flames From Hyperspectral Measurements
,”
J. Quant. Spectrosc. Radiat. Transfer
,
279
, p.
108047
.10.1016/j.jqsrt.2021.108047
91.
Rhoby
,
M. R.
,
Blunck
,
D. L.
, and
Gross
,
K. C.
,
2014
, “
Mid-IR Hyperspectral Imaging of Laminar Flames for 2-D Scalar Values
,”
Opt. Express
,
22
(
18
), pp.
21600
21617
.10.1364/OE.22.021600
92.
Mishra
,
S.
, and
Molinaro
,
R.
,
2021
, “
Physics Informed Neural Networks for Simulating Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
270
, p.
107705
.10.1016/j.jqsrt.2021.107705
You do not currently have access to this content.