Abstract

In the double-wall cooling of turbine blades, coolant migration can lead to uneven flow distribution, which, in severe cases, can cause hot gas intrusion into the film holes, affecting the lifespan of the blade. To mitigate the negative influence of coolant migration, this study proposes a novel double-wall system called the narrow-channel double-wall cooling (NCDW) system, where thin walls are arranged inside the internal channel of double-wall cooling to achieve a more balanced coolant distribution for film holes. However, the addition of thin walls alters the flow and heat transfer distributions within the double-wall structure, ultimately affecting the overall cooling effectiveness. Therefore, numerical methods are employed in this study to analyze the flow distribution characteristics, overall cooling effectiveness, and internal heat transfer characteristics of the narrow-channel double-wall cooling. The numerical results demonstrate that narrow-channel double-wall cooling, with or without pin fins, significantly improves the uneven mass flow distribution in the film holes while maintaining an overall cooling effectiveness that is comparable to that of the double-wall effusion cooling (DWEC) system. It is worth noting that although the overall cooling effectiveness difference is slight, there are significant differences in the internal-heat-transfer characteristics between the two double-wall cooling systems. Additionally, the study discusses the influence of narrow wall thickness on the overall cooling effectiveness and flow distributions, revealing that a thinner wall can lead to higher overall cooling effectiveness in narrow-channel double-wall cooling.

References

1.
Bunker
,
R. S.
,
2013
, “
Gas Turbine Cooling: Moving From Macro to Micro Cooling
,” ASME Paper No. GT2013-94277. 10.1115/GT2013-94277
2.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Hussain
,
C. I.
,
Mkpadi
,
M. C.
, and
Nazari
,
A.
,
1988
, “
Impingement/Effusion Cooling: Overall Wall Heat Transfer
,” ASME Paper No. 88-GT-290. 10.1115/88-GT-290
3.
Al Dabagh
,
A. M.
,
Andrews
,
G. E.
,
Abdul Husain
,
R. A. A.
,
Husain
,
C. I.
,
Nazari
,
A.
, and
Wu
,
J.
,
1990
, “
Impingement/Effusion Cooling: The Influence of the Number of Impingement Holes and Pressure Loss on the Heat Transfer Coefficient
,”
ASME J. Turbomach.
,
112
(
3
), pp.
467
476
.10.1115/1.2927682
4.
Ekkad
,
S. V.
,
Huang
,
Y.
, and
Han
,
J.-C.
,
1999
, “
Impingement Heat Transfer on a Target Plate With Film Cooling Holes
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
522
528
.10.2514/2.6471
5.
Nourin
,
F. N.
,
Blum
,
B. L.
, and
Amano
,
R. S.
,
2022
, “
Exploring the Effects of Guide Vane on Dimpled Cooling Channel of Gas Turbine Blade
,”
J. Energy Resour. Technol.
,
145
(
5
), p.
051702
.10.1115/1.4056334
6.
Rao
,
Y.
,
Liu
,
Y.
, and
Wan
,
C.
,
2018
, “
Multiple-Jet Impingement Heat Transfer in Double-Wall Cooling Structures With Pin Fins and Effusion Holes
,”
Int. J. Therm. Sci.
,
133
, pp.
106
119
.10.1016/j.ijthermalsci.2018.07.021
7.
Li
,
L.
,
Li
,
H.
,
Gao
,
W.
,
Tong
,
F.
, and
Tang
,
Z.
,
2019
, “
Influence of Pin Shape on Heat Transfer Characteristics of Laminated Cooling Configuration
,” ASME Paper No. GT2019-92055. 10.1115/GT2019-92055
8.
Zhang
,
W.
,
Zhu
,
H.
, and
Li
,
G.
,
2020
, “
Experimental Study of Heat Transfer on the Internal Surfaces of a Double-Wall Structure With Pin Fin Array
,”
Energies
,
13
(
24
), p.
6573
.10.3390/en13246573
9.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Rawlinson
,
A. J.
,
2017
, “
An Integrated Conjugate Computational Approach for Evaluating the Aerothermal and Thermomechanical Performance of Double-Wall Effusion Cooled Systems
,” ASME Paper No. GT2017-64711. 10.1115/GT2017-64711
10.
Ngetich
,
G. C.
,
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2018
, “
A Three-Dimensional Conjugate Approach for Analyzing a Double-Walled Effusion-Cooled Turbine Blade
,”
ASME J. Turbomach.
,
141
(
1
), p.
011002
.10.1115/1.4041379
11.
van de Noort
,
M.
, and
Ireland
,
P.
,
2022
, “
A Low Order Flow Network Model for Double-Wall Effusion Cooling Systems
,”
Int. J. Turbomach., Propul., Power
,
7
(
1
), p.
5
.10.3390/ijtpp7010005
12.
van de Noort
,
M.
,
Murray
,
A. V.
, and
Ireland
,
P. T.
,
2022
, “
Low Order Heat & Mass Flow Network Modelling for Quasi-Transpiration Cooling Systems
,” ASME Paper No. GT2022-81780. 10.1115/GT2022-81780
13.
Campbell
,
C. X.
, and
Morrison
,
J. A.
,
2012
, “
Turbine Airfoil With a Compliant Outer Wall
,” U.S. Patent No. 8,147,196 B2, 3.
14.
Devore
,
M. A.
, and
Paauwe
,
C. S.
,
2009
, “
Turbine Airfoil With Improved Cooling
,” U.S. Patent 7,600,966 B.2
15.
Xie
,
G.
,
Liu
,
C.
,
Ye
,
L.
,
Wang
,
R.
,
Niu
,
J.
, and
Zhai
,
Y.
,
2020
, “
Effects of Impingement Gap and Hole Arrangement on Overall Cooling Effectiveness for Impingement/Effusion Cooling
,”
Int. J. Heat Mass Transfer
,
152
, p.
119449
.10.1016/j.ijheatmasstransfer.2020.119449
16.
Panda
,
R. K.
, and
Prasad
,
B.
,
2014
, “
Conjugate Heat Transfer From an Impingement and Film-Cooled Flat Plate
,”
J. Thermophys. Heat Transfer
,
28
(
4
), pp.
647
666
.10.2514/1.T4119
17.
Zuckerman
,
N.
, and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
5
), pp.
544
552
.10.1115/1.1861921
18.
Mensch
,
A.
, and
Thole
,
K. A.
,
2015
, “
Conjugate Heat Transfer Analysis of the Effects of Impingement Channel Height for a Turbine Blade Endwall
,”
Int. J. Heat Mass Transfer
,
82
, pp.
66
77
.10.1016/j.ijheatmasstransfer.2014.10.076
19.
Siddique
,
W.
,
Shevchuk
,
I. V.
,
El-GaBry
,
L.
,
Hushmandi
,
N. B.
, and
Fransson
,
T. H.
,
2013
, “
On Flow Structure, Heat Transfer and Pressure Drop in Varying Aspect Ratio Two-Pass Rectangular Channel With Ribs at 45°
,”
Heat Mass Transfer
,
49
(
5
), pp.
679
694
.10.1007/s00231-013-1111-5
20.
Siddique
,
W.
,
El-GaBry
,
L.
,
Shevchuk
,
I. V.
,
Hushmandi
,
N. B.
, and
Fransson
,
T. H.
,
2011
, “
Flow Structure, Heat Transfer and Pressure Drop in Varying Aspect Ratio Two-Pass Rectangular Smooth Channels
,”
Heat Mass Transfer
,
48
(
5
), pp.
735
748
.10.1007/s00231-011-0926-1
21.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
Development of a Steady-State Experimental Facility for the Analysis of Double-Wall Effusion Cooling Geometries
,”
ASME J. Turbomach.
,
141
(
4
), p.
041008
.10.1115/1.4041751
You do not currently have access to this content.