Abstract

Ice formation and accumulation on aircraft is a major problem in aviation. Icing is directly responsible for aircraft incidents, limiting the safety of air travel and requiring expensive, and sometimes ineffective deicing strategies. Furthermore, electrification of aircraft platforms leads to difficulties with integration of legacy deicing methods such as pneumatic boots. In this work, we study electrothermal pulse deicing capable of efficient and rapid removal of ice from aircraft wings. The pulse approach enables the efficient melting of a thin (<100 μm) ice layer on the wing surface to limit parasitic heat losses. Only the interface is melted, with the rest of the ice sliding on the melt lubrication layer due to aerodynamic forces. To study pulse deicing, we developed a transient thermal-hydrodynamic numerical model that accounts for multiple phases and materials, specific and latent heating effects, melt layer hydrodynamics, as well as boundary layer effects. To identify optimal deicing strategies, we use our model to study the effects of heater thickness (50 μm < th < 1 mm), substrate electrical insulation thickness (10 μm < ti < 1 mm), pulse duration (0.4 s < Δtpulse < 4.5 s), and pulse energy. Optimum operating points are identified for large (Boeing-747), midsize (Embraer-E175), and small (Cessna-172) aircraft. The scale-dependent thermal-hydraulic model results are used to estimate input conditions required for deicing and integrated into an electrical model considering energy storage, power electronics, integration, and layout, to achieve overall volumetric and gravimetric power density optimization.

References

1.
Bragg
,
M.
,
Perkins
,
W.
,
Sarter
,
N.
,
Basar
,
T.
,
Voulgaris
,
P.
,
Gurbacki
,
H.
,
Melody
,
J.
, and
McCray
,
S.
,
1998
, “
An Interdisciplinary Approach to Inflight Aircraft Icing Safety
,”
AIAA
Paper No. 98-0095.10.2514/6.98-0095
2.
Lankford
,
T. T.
,
2000
,
Aircraft Icing: A Pilot's Guide
,
McGraw-Hill Professional
, New York.
3.
Farzaneh
,
M.
,
2008
,
Atmospheric Icing of Power Networks
,
Springer Science & Business Media
, Berlin, Germany.
4.
Xing
,
Z. W.
,
Zhang
,
H.
, and
Ren
,
Z.
,
2012
, “
Adaptive Kalman Filter Based Aircraft Ground Icing Thickness Prediction
,”
Advanced Materials Research
, Trans Tech Publ, Stafa-Zurich, Switzerland, pp.
1660
1667
.
5.
Gent
,
R. W.
,
Dart
,
N. P.
, and
Cansdale
,
J. T.
,
2000
, “
Aircraft Icing
,”
Philos. Trans. R. Soc. London, Ser. A: Math., Phys. Eng. Sci.
,
358
(
1776
), pp.
2873
2911
.10.1098/rsta.2000.0689
6.
Thomas
,
S. K.
,
Cassoni
,
R. P.
, and
MacArthur
,
C. D.
,
1996
, “
Aircraft Anti-Icing and De-Icing Techniques and Modeling
,”
J. Aircr.
,
33
(
5
), pp.
841
854
.10.2514/3.47027
7.
Myers
,
T. G.
,
2001
, “
Extension to the Messinger Model for Aircraft Icing
,”
AIAA J.
,
39
(
2
), pp.
211
218
.10.2514/2.1312
8.
Potapczuk
,
M. G.
,
2013
, “
Aircraft Icing Research at NASA Glenn Research Center
,”
J. Aerosp. Eng.
,
26
(
2
), pp.
260
276
.10.1061/(ASCE)AS.1943-5525.0000322
9.
Botura
,
G.
,
Sweet
,
D.
, and
Flosdorf
,
D.
,
2005
, “
Development and Demonstration of Low Power Electrothermal De-Icing System
,”
AIAA
Paper No. 2005-1460.10.2514/6.2005-1460
10.
Zhang
,
Z.
,
Chen
,
B.
,
Lu
,
C.
,
Wu
,
H.
,
Wu
,
H.
,
Jiang
,
S.
, and
Chai
,
G.
,
2017
, “
A Novel Thermo-Mechanical Anti-Icing/De-Icing System Using Bi-Stable Laminate Composite Structures With Superhydrophobic Surface
,”
Compos. Struct.
,
180
, pp.
933
943
.10.1016/j.compstruct.2017.08.068
11.
Ma
,
F.
, and
Comeau
,
D.
,
1990
, “
Aircraft De-Icing and Anti-Icing Composition
,” Patent No.
US4954279A
.https://patents.google.com/patent/US4954279A/en
12.
Schrimpf
,
H.
, and
Pfitzner
,
K.
,
1998
, “
Aircraft Deicing or Antiicing Compositions
,” Patent No.
US5759436A
.https://patents.google.com/patent/US5759436
13.
Subeshan
,
B.
,
Usta
,
A.
, and
Asmatulu
,
R.
,
2020
, “
Deicing and Self-Cleaning of Plasma-Treated Superhydrophobic Coatings on the Surface of Aluminum Alloy Sheets
,”
Surf. Interfaces
,
18
, p.
100429
.10.1016/j.surfin.2020.100429
14.
Akash Raja
,
A.
,
Nisha
,
M. S.
,
Jatin
,
J.
, and
Kiren
,
J. N.
,
2021
, “
An Experimental Study of De-Icing Property Using Reduced Graphene Oxide–Boron Nitride Nano Powder in CFRP
,”
J. Phys.: Conf. Ser.
,
2070
(
1
), p.
012152
.10.1088/1742-6596/2070/1/012152
15.
Gornik
,
A.
,
2013
, “
Mechanical Vibration Deicing System
,” Patent No. US8517313B2.
16.
Fanelli
,
M.
,
Wright
,
W.
,
Masiulaniec
,
K.
,
De Witt
,
K.
,
Keith
,
T.
, Jr.
,
Cole
,
R.
,
Wilson
,
T.
,
Bowen
,
K.
, and
Martin
,
C.
,
1992
, “
Experimental and Numerical Investigation of Anti-Icing Phenomena on a NACA 0012 Assembly
,”
AIAA
Paper No. 92-0531.10.2514/6.92-0531
17.
Goraj
,
Z.
,
2004
, “
An Overview of the Deicing and Anti-Icing Technologies With Prospects for the Future
,”
24th International Congress of the Aeronautical Sciences
, Yokohama, Japan, Aug. 29–Sept. 3, pp.
1
11
.https://www.icas.org/ICAS_ARCHIVE/ICAS2004/PAPERS/547.PDF
18.
Yamazaki
,
M.
,
Jemcov
,
A.
, and
Sakaue
,
H.
,
2021
, “
A Review on the Current Status of Icing Physics and Mitigation in Aviation
,”
Aerospace
,
8
(
7
), p.
188
.10.3390/aerospace8070188
19.
Inanlu
,
M. J.
,
Gurumukhi
,
Y.
,
Kabirzadeh
,
P.
,
Anand
,
R.
,
Khodakarami
,
S.
,
Viswanathan
,
V.
,
Stillwell
,
A.
, and
Miljkovic
,
N.
, “
Capacitive Sensing of Frost Growth Dynamics on Aluminum Surfaces With Different Wettabilities
,”
Int. J. Heat Mass Transfer.
,
225
, p.
125377
.10.1016/j.ijheatmasstransfer.2024.125377
20.
Kolbakir
,
C.
,
Hu
,
H.
,
Liu
,
Y.
, and
Hu
,
H.
,
2020
, “
An Experimental Study on Different Plasma Actuator Layouts for Aircraft Icing Mitigation
,”
Aerosp. Sci. Technol.
,
107
, p.
106325
.10.1016/j.ast.2020.106325
21.
Liu
,
Y.
,
Kolbakir
,
C.
,
Starikovskiy
,
A. Y.
,
Miles
,
R.
, and
Hu
,
H.
,
2019
, “
An Experimental Study on the Thermal Characteristics of NS-DBD Plasma Actuation and Application for Aircraft Icing Mitigation
,”
Plasma Sources Sci. Technol.
,
28
(
1
), p.
014001
.10.1088/1361-6595/aaedf8
22.
Rosero
,
J.
,
Ortega
,
J.
,
Aldabas
,
E.
, and
Romeral
,
L.
,
2007
, “
Moving Towards a More Electric Aircraft
,”
IEEE Aerosp. Electron. Syst. Mag.
,
22
(
3
), pp.
3
9
.10.1109/MAES.2007.340500
23.
Sarlioglu
,
B.
, and
Morris
,
C. T.
,
2015
, “
More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft
,”
IEEE Trans. Transp. Electrif.
,
1
(
1
), pp.
54
64
.10.1109/TTE.2015.2426499
24.
Wheeler
,
P.
, and
Bozhko
,
S.
,
2014
, “
The More Electric Aircraft: Technology and Challenges
,”
IEEE Electrif. Mag.
,
2
(
4
), pp.
6
12
.10.1109/MELE.2014.2360720
25.
Wheeler
,
P.
,
2016
, “
Technology for the More and All Electric Aircraft of the Future
,” 2016 IEEE International Conference on Automatica (
ICA-ACCA
), Curico, Chile, Oct. 19–21, pp.
1
5
.10.1109/ICA-ACCA.2016.7778519
26.
Shinkafi
,
A.
, and
Lawson
,
C.
,
2014
, “
Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System
,”
Int. J. Aerosp. Mech. Eng.
,
8
(
6
), pp.
1073
1080
.10.5281/zenodo.1092896
27.
Petrenko
,
V.
,
2006
, “
Methods for Modifying Friction Between an Object and Ice or Snow
,” Patent No.
US7034257B2
.https://pubchem.ncbi.nlm.nih.gov/patent/US-7034257-B2
28.
Petrenko
,
V. F.
,
Higa
,
M.
,
Starostin
,
M.
, and
Deresh
,
L.
,
2003
, “
Pulse Electrothermal De-Icing
,”
The 13th International Offshore and Polar Engineering Conference
, Honolulu, HI, May 25–30, pp.
435
438
.https://www.researchgate.net/publication/266891650_Pulse_Electrothermal_De-Icing
29.
Petrenko
,
V. F.
,
Sullivan
,
C. R.
,
Kozlyuk
,
V.
,
Petrenko
,
F. V.
, and
Veerasamy
,
V.
,
2011
, “
Pulse Electro-Thermal De-Icer (PETD)
,”
Cold Reg. Sci. Technol.
,
65
(
1
), pp.
70
78
.10.1016/j.coldregions.2010.06.002
30.
Giamati
,
M. J.
,
1997
, “
Electrothermal De-Icing System
,” Patent No.
US5657951A
.https://patents.google.com/patent/US5657951A/en
31.
Henry
,
R.
,
1992
, “
Development of an Electrothermal De-Icing/Anti-Icing Model
,”
AIAA
Paper No. 92-0526.10.2514/6.92-0526
32.
Rutherford
,
R. B.
, and
Dudman
,
R. L.
,
2001
, “
Zoned Aircraft De-Icing System and Method
,” Patent No.
US6237874B1
.https://patents.google.com/patent/US6237874B1/en
33.
Volkner
,
W.
,
Sonksen
,
A.
, and
Schultz
,
H.
,
1969
, “
Aircraft De-Icing System
,” Patent No. US3420476A.
34.
Huang
,
J.
,
Keith
,
T. G.
, Jr.
, and
De Witt
,
K. J.
,
1993
, “
Efficient Finite Element Method for Aircraft Deicing Problems
,”
J. Aircr.
,
30
(
5
), pp.
695
704
.10.2514/3.46400
35.
Keith
,
T.
,
De Witt
,
K. J.
,
Wright
,
W.
, and
Masiulaniec
,
K.
,
1988
, “
Overview of Numerical Codes Developed for Predicted Electrothermal Deicing of Aircraft Blades
,”
AIAA
Paper No. 88-0288.10.2514/6.88-0288
36.
Yaslik
,
A.
,
De Witt
,
K.
,
Keith
,
T.
, Jr.
, and
Boronow
,
W.
,
1992
, “
Further Developments in Three-Dimensional Simulation of Electrothermal Deicing Systems
,”
AIAA
Paper No. 92-0528.10.2514/6.92-0528
37.
Scott
,
J.
,
Hankey
,
W.
,
Giessler
,
F.
, and
Gielda
,
T.
,
1988
, “
Navier-Stokes Solution to the Flowfield Over Ice Accretion Shapes
,”
J. Aircr.
,
25
(
8
), pp.
710
716
.10.2514/3.45648
38.
Al-Khalil
,
K. M.
,
Keith
,
T. G.
, Jr.
, and
De Witt
,
K. J.
,
1994
, “
Development of an Improved Model for Runback Water on Aircraft Surfaces
,”
J. Aircr.
,
31
(
2
), pp.
271
278
.10.2514/3.46484
39.
Chavan
,
S.
,
Foulkes
,
T.
,
Gurumukhi
,
Y.
,
Boyina
,
K.
,
Rabbi
,
K.
, and
Miljkovic
,
N.
,
2019
, “
Pulse Interfacial Defrosting
,”
Appl. Phys. Lett.
,
115
(
7
), p.
071601
.10.1063/1.5113845
40.
Elsharkawy
,
M.
,
Tortorella
,
D.
,
Kapatral
,
S.
, and
Megaridis
,
C. M.
,
2016
, “
Combating Frosting With Joule-Heated Liquid-Infused Superhydrophobic Coatings
,”
Langmuir
,
32
(
17
), pp.
4278
4288
.10.1021/acs.langmuir.6b00064
41.
Drela
,
M.
,
1989
, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils
,” Low Reynolds Number Aerodynamics: Proceedings of the Conference, Notre Dame, IN, June 5–7,
Springer
, pp.
1
12
.
42.
Morgado
,
J.
,
Vizinho
,
R.
,
Silvestre
,
M. A. R.
, and
Páscoa
,
J. C.
,
2016
, “
XFOIL vs CFD Performance Predictions for High Lift Low Reynolds Number Airfoils
,”
Aerosp. Sci. Technol.
,
52
, pp.
207
214
.10.1016/j.ast.2016.02.031
43.
Madonna
,
V.
,
Giangrande
,
P.
, and
Galea
,
M.
,
2018
, “
Electrical Power Generation in Aircraft: Review, Challenges, and Opportunities
,”
IEEE Trans. Transp. Electrif.
,
4
(
3
), pp.
646
659
.10.1109/TTE.2018.2834142
44.
Rölke
,
J.
,
1981
, “
Nichrome Thin Film Technology and Its Application
,”
ElectroComponent Sci. Technol.
,
9
, p.
928373
.10.1155/APEC.9.51
45.
Rawat
,
S.
, and
Shah
,
A.
,
1980
, “
Properties of Thin Films of Kanthal
,”
J. Vac. Sci. Technol.
,
17
(
3
), pp.
739
742
.10.1116/1.570552
46.
Ho
,
C. Y.
,
Ackerman
,
M. W.
,
Wu
,
K. Y.
,
Havill
,
T. N.
,
Bogaard
,
R. H.
,
Matula
,
R. A.
,
Oh
,
S. G.
, and
James
,
H. M.
,
1983
, “
Electrical Resistivity of Ten Selected Binary Alloy Systems
,”
J. Phys. Chem. Ref. Data
,
12
(
2
), pp.
183
322
.10.1063/1.555684
47.
Dutta
,
S.
,
Sankaran
,
K.
,
Moors
,
K.
,
Pourtois
,
G.
,
Van Elshocht
,
S.
,
Bömmels
,
J.
,
Vandervorst
,
W.
,
Tőkei
,
Z.
, and
Adelmann
,
C.
,
2017
, “
Thickness Dependence of the Resistivity of Platinum-Group Metal Thin Films
,”
J. Appl. Phys.
,
122
(
2
), p.
025107
.
48.
Ashida
,
T.
,
Miyamura
,
A.
,
Oka
,
N.
,
Sato
,
Y.
,
Yagi
,
T.
,
Taketoshi
,
N.
,
Baba
,
T.
, and
Shigesato
,
Y.
,
2009
, “
Thermal Transport Properties of Polycrystalline Tin-Doped Indium Oxide Films
,”
J. Appl. Phys.
,
105
(
7
), p.
073709
.
49.
Gupta
,
R.
,
Rao
,
K. D. M.
,
Kiruthika
,
S.
, and
Kulkarni
,
G. U.
,
2016
, “
Visibly Transparent Heaters
,”
ACS Appl. Mater. Interfaces
,
8
(
20
), pp.
12559
12575
.10.1021/acsami.5b11026
50.
Jeyachandran
,
Y. L.
,
Karunagaran
,
B.
,
Narayandass
,
S. K.
,
Mangalaraj
,
D.
,
Jenkins
,
T. E.
, and
Martin
,
P. J.
,
2006
, “
Properties of Titanium Thin Films Deposited by DC Magnetron Sputtering
,”
Mater. Sci. Eng.: A
,
431
(
1–2
), pp.
277
284
.10.1016/j.msea.2006.06.020
51.
White
,
F. M.
, and
Majdalani
,
J.
,
2006
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
52.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
Wiley
, Hoboken, NJ.
53.
Aguglia
,
D.
,
Martins
,
C.
,
Bastos
,
M. C.
,
Nisbet
,
D.
,
Siemaszko
,
D.
,
Sklavounou
,
E.
, and
Viarouge
,
P.
,
2011
, “
Klystron Modulator Technology Challenges for the Compact Linear Collider (CLIC)
,”
2011 IEEE Pulsed Power Conference
, Chicago, IL, June 19–23, pp.
1413
1421
.10.1109/PPC.2011.6191626
54.
Schneuwly
,
A.
, and
Gallay
,
R.
,
2000
, “
Properties and Applications of Supercapacitors From the State-of-the-Art to Future Trends
,”
Proceeding PCIM, Nuremberg, Germany
, June 6–8, pp.
58
75
.https://www.researchgate.net/publication/260400351_Properties_and_Applications_of_Supercapacitors_From_the_State-of-the-art_to_Future_Trends
55.
Namisnyk
,
A. M.
, and
Zhu
,
J. G.
,
2003
, “
A Survey of Electrochemical Supercapacitor Technology
,” University of Technology, Sydney, Australia.
56.
Li
,
L.
,
Khodakarami
,
S.
,
Yan
,
X.
,
Fazle Rabbi
,
K.
,
Gunay
,
A. A.
,
Stillwell
,
A.
, and
Miljkovic
,
N.
,
2022
, “
Enabling Renewable Energy Technologies in Harsh Climates With Ultra‐Efficient Electro‐Thermal Desnowing, Defrosting, and Deicing
,”
Adv. Funct. Mater.
,
32
(
31
), p.
2201521
.10.1002/adfm.202201521
57.
Ding
,
J.
,
Hu
,
W.
,
Paek
,
E.
, and
Mitlin
,
D.
,
2018
, “
Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium
,”
Chem. Rev.
,
118
(
14
), pp.
6457
6498
.10.1021/acs.chemrev.8b00116
58.
González
,
A.
,
Goikolea
,
E.
,
Barrena
,
J. A.
, and
Mysyk
,
R.
,
2016
, “
Review on Supercapacitors: Technologies and Materials
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1189
1206
.10.1016/j.rser.2015.12.249
59.
Beeram
,
P. S. R.
,
Waldman
,
R. M.
, and
Hu
,
H.
, “
Measurements of Ice Adhesion over Ice Mitigation Coatings Pertinent to Aircraft Icing and Anti-/De-Icing
,”
AIAA
Paper No. 2017–392810.2514/6.2017-3928.
60.
Yang
,
S.
,
Yang
,
Y.-Y.
,
Zhang
,
J.-Y.
,
Zhang
,
Z.-Y.
,
Zhang
,
L.
, and
Lin
,
X.-C.
,
2018
, “
Laser-Induced Cracks in Ice Due to Temperature Gradient and Thermal Stress
,”
Opt. Laser Technol.
,
102
, pp.
115
123
.10.1016/j.optlastec.2017.12.005
61.
Antonini
,
C.
,
Innocenti
,
M.
,
Horn
,
T.
,
Marengo
,
M.
, and
Amirfazli
,
A.
,
2011
, “
Understanding the Effect of Superhydrophobic Coatings on Energy Reduction in Anti-Icing Systems
,”
Cold Reg. Sci. Technol.
,
67
(
1–2
), pp.
58
67
.10.1016/j.coldregions.2011.02.006
62.
Gurumukhi
,
Y.
,
Chavan
,
S.
,
Sett
,
S.
,
Boyina
,
K.
,
Ramesh
,
S.
,
Sokalski
,
P.
,
Fortelka
,
K.
, et al.,
2020
, “
Dynamic Defrosting on Superhydrophobic and Biphilic Surfaces
,”
Matter
,
3
(
4
), pp.
1178
1195
.10.1016/j.matt.2020.06.029
63.
Witt
,
K. E.
,
Ahmadi
,
S. F.
, and
Boreyko
,
J. B.
,
2019
, “
Ice Wicking
,”
Phys. Rev. Fluids
,
4
(
2
), p.
024002
.10.1103/PhysRevFluids.4.024002
64.
Chang
,
H. C.
,
Rajagopal
,
M. C.
,
Hoque
,
M. J.
,
Oh
,
J.
,
Li
,
L.
,
Li
,
J.
,
Zhao
,
H.
, et al.,
2020
, “
Composite Structured Surfaces for Durable Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
156
, p.
119890
.10.1016/j.ijheatmasstransfer.2020.119890
65.
Ma
,
J.
,
Sett
,
S.
,
Cha
,
H.
,
Yan
,
X.
, and
Miljkovic
,
N.
,
2020
, “
Recent Developments, Challenges, and Pathways to Stable Dropwise Condensation: A Perspective
,”
Appl. Phys. Lett.
,
116
(
26
), p.
260501
.10.1063/5.0011642
66.
Dong
,
Y.
, and
Ai
,
J.
,
2014
, “
Inflight Parameter Identification and Icing Location Detection of the Aircraft: The Time-Varying Case
,”
J. Control Sci. Eng.
, 2014(1), pp. 1–11.10.1155/2014/396532
67.
Cronin
,
D. J.
,
Jackson
,
D. G.
, and
Owens
,
D. G.
,
2006
, “
Ice Detector Configuration for Improved Ice Detection at Near Freezing Conditions
,” Patent No.
USRE39295E1
.https://eureka.patsnap.com/patent-USRE39295E1
You do not currently have access to this content.