Abstract

This paper presents the convective heat transfer coefficient of cubic lattices under both buoyancy-induced and forced convection. Additionally, it examines the effective thermal conductivity, permeability, and inertial coefficient of a cubic unit cell of porosity ∼0.87. The test specimens were additively manufactured using stainless steel 420 (with 40% bronze infiltration) using the binder jetting technique. In the buoyancy-driven convection experiments, three different aspect ratios (width/height) varying from 0.5 to 2 were tested across three different heating orientations, viz., bottom wall (0 deg), side wall (90 deg), and top wall (180 deg). The lattice with the lowest aspect ratio had the highest convective heat transfer coefficient in all three heating orientations. The forced convection heat transfer coefficient was determined for an additively manufactured part comprising 10 × 10 cubic unit cell array in the plane perpendicular to the flow and 20 unit cells in the streamwise direction. Additionally, the flow characteristics of the cubic lattice were characterized through permeability (K) and inertial coefficient (Cf), determined by conducting separate pressure drop experiments over a wide range of flow velocities. The thermal hydraulic performance (THP) of the cubic lattice was assessed by combining the periodic regime convective heat transfer coefficient with the pressure drop data obtained from the experimentally determined values of K and Cf. The comprehensive characterization of flow and thermal transport, including K and Cf, along with hsf, keff, presented in this paper, provides a robust foundation for their application in volume-averaged computations for detailed parametric study.

References

1.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
2.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
,
2002
, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3781
3793
.10.1016/S0017-9310(02)00089-3
3.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2002
, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
155
163
.10.1115/1.1464877
4.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2005
, “
Metal Foam and Finned Metal Foam Heat Sinks for Electronics Cooling in Buoyancy-Induced Convection
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
259
266
.
5.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
6.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
121
(
2
), pp.
466
471
.10.1115/1.2826001
7.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3618
3632
.10.1016/j.ijheatmasstransfer.2012.03.017
8.
Li
,
Y.
,
Gong
,
L.
,
Xu
,
M.
, and
Joshi
,
Y.
,
2021
, “
A Review of Thermo-Hydraulic Performance of Metal Foam and Its Application as Heat Sinks for Electronics Cooling
,”
ASME J. Electron. Packag.
,
143
(
3
), p.
030801
.10.1115/1.4048861
9.
Liang
,
D.
,
He
,
G.
,
Chen
,
W.
,
Chen
,
Y.
, and
Chyu
,
M. K.
,
2022
, “
Fluid Flow and Heat Transfer Performance for Micro-Lattice Structures Fabricated by Selective Laser Melting
,”
Int. J. Therm. Sci.
,
172
, p.
107312
.10.1016/j.ijthermalsci.2021.107312
10.
Takarazawa
,
S.
,
Ushijima
,
K.
,
Fleischhauer
,
R.
,
Kato
,
J.
,
Terada
,
K.
,
Cantwell
,
W. J.
,
Kaliske
,
M.
,
Kagaya
,
S.
, and
Hasumoto
,
S.
,
2022
, “
Heat-Transfer and Pressure Drop Characteristics of Micro-Lattice Materials Fabricated by Selective Laser Metal Melting Technology
,”
Heat Mass Transfer
,
58
(
1
), pp.
125
141
.10.1007/s00231-021-03083-0
11.
Kaur
,
I.
, and
Singh
,
P.
,
2020
, “
Flow and Thermal Transport Through Unit Cell Topologies of Cubic and Octahedron Families
,”
Int. J. Heat Mass Transfer
,
158
, p.
119784
.10.1016/j.ijheatmasstransfer.2020.119784
12.
Lorenzon
,
A.
,
Vaglio
,
E.
,
Casarsa
,
L.
, and
Totis
,
G.
,
2024
, “
Effects of Different Cross-Sections of Body Centered Cubic Cells on Pressure Drop and Heat Transfer of Additively Manufactured Heat Sinks
,”
Int. J. Heat Mass Transfer
,
222
, p.
125170
.10.1016/j.ijheatmasstransfer.2024.125170
13.
Chaudhari
,
A.
,
Ekade
,
P.
, and
Krishnan
,
S.
,
2019
, “
Experimental Investigation of Heat Transfer and Fluid Flow in Octet-Truss Lattice Geometry
,”
Int. J. Therm. Sci.
,
143
, pp.
64
75
.10.1016/j.ijthermalsci.2019.05.003
14.
Kaur
,
I.
,
Aider
,
Y.
,
Nithyanandam
,
K.
, and
Singh
,
P.
,
2022
, “
Thermal-Hydraulic Performance of Additively Manufactured Lattices for Gas Turbine Blade Trailing Edge Cooling
,”
Appl. Therm. Eng.
,
211
, p.
118461
.10.1016/j.applthermaleng.2022.118461
15.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Endwall Heat Transfer Characteristics of Octahedron Family Lattice-Frame Materials
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105522
.10.1016/j.icheatmasstransfer.2021.105522
16.
Aider
,
Y.
,
Kaur
,
I.
,
Cho
,
H.
, and
Singh
,
P.
,
2022
, “
Periodic Heat Transfer Characteristics of Additively Manufactured Lattices
,”
Int. J. Heat Mass Transfer
,
189
, p.
122692
.10.1016/j.ijheatmasstransfer.2022.122692
17.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
State-of-the-Art in Heat Exchanger Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
178
, p.
121600
.10.1016/j.ijheatmasstransfer.2021.121600
18.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Critical Evaluation of Additively Manufactured Metal Lattices for Viability in Advanced Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
168
, p.
120858
.10.1016/j.ijheatmasstransfer.2020.120858
19.
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2005
, “
Natural Convection in Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2452
2463
.10.1016/j.ijheatmasstransfer.2005.01.002
20.
Feng
,
S.
,
Li
,
F.
,
Zhang
,
F.
, and
Lu
,
T. J.
,
2018
, “
Natural Convection in Metal Foam Heat Sinks With Open Slots
,”
Exp, Therm. Fluid Sci.
,
91
, pp.
354
362
.10.1016/j.expthermflusci.2017.07.010
21.
Qu
,
Z.
,
Wang
,
T.
,
Tao
,
W.
, and
Lu
,
T.
,
2012
, “
Experimental Study of Air Natural Convection on Metallic Foam-Sintered Plate
,”
Int. J. Heat Fluid Flow
,
38
, pp.
126
132
.10.1016/j.ijheatfluidflow.2012.08.005
22.
Aider
,
Y.
,
Kaur
,
I.
,
Mahajan
,
R. L.
, and
Singh
,
P.
,
2024
, “
Enhancing Buoyancy-Driven Convection Transport Between Two Vertical Parallel Plates With Symmetric and Asymmetric Heating Using Additively Manufactured Lattice Structures
,”
Int. J. Heat Mass Transfer
,
222
, p.
125141
.10.1016/j.ijheatmasstransfer.2023.125141
23.
Wang
,
N.
,
Kaur
,
I.
,
Singh
,
P.
, and
Li
,
L.
,
2021
, “
Prediction of Effective Thermal Conductivity of Porous Lattice Structures and Validation With Additively Manufactured Metal Foams
,”
Appl. Therm. Eng.
,
187
, p.
116558
.10.1016/j.applthermaleng.2021.116558
24.
Kaur
,
I.
,
Mahajan
,
R. L.
, and
Singh
,
P.
,
2023
, “
Generalized Correlation for Effective Thermal Conductivity of High Porosity Architectured Materials and Metal Foams
,”
Int. J. Heat Mass Transfer
,
200
, p.
123512
.10.1016/j.ijheatmasstransfer.2022.123512
25.
Gebhart
,
B.
,
Jaluria
,
Y.
,
Mahajan
,
R.
, and
Sammakia
,
B.
,
1988
,
Buoyancy-Induced Flows and Transport
,
Hemisphere Publishing Corporation
, London, UK.
26.
Al-Arabi
,
M.
, and
El-Riedy
,
M. K.
,
1976
, “
Natural Convection Heat Transfer From Isothermal Horizontal Plates of Different Shapes
,”
Int. J. Heat Mass Transfer
,
19
(
12
), pp.
1399
1404
.10.1016/0017-9310(76)90069-7
27.
Huang
,
R.-T.
,
Sheu
,
W.-J.
, and
Wang
,
C.-C.
,
2008
, “
Orientation Effect on Natural Convective Performance of Square Pin Fin Heat Sinks
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2368
2376
.10.1016/j.ijheatmasstransfer.2007.08.014
28.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
272
.10.1115/1.1429637
29.
Kaur
,
I.
, and
Singh
,
P.
,
2023
, “
Effects of Inherent Surface Roughness of Additively Manufactured Lattice Frame Material on Flow and Thermal Transport
,”
Int. J. Heat Mass Transfer
,
209
, p.
124077
.10.1016/j.ijheatmasstransfer.2023.124077
30.
Singh
,
P.
,
Ji
,
Y.
, and
Ekkad
,
S. V.
,
2019
, “
Multipass Serpentine Cooling Designs for Negating Coriolis Force Effect on Heat Transfer: 45-Deg Angled Rib Turbulated Channels
,”
ASME J. Turbomach
,
141
(
7
), p.
071003
.10.1115/1.4042648
31.
Singh
,
P.
,
Ji
,
Y.
, and
Ekkad
,
S. V.
,
2018
, “
Experimental and Numerical Investigation of Heat and Fluid Flow in a Square Duct Featuring Criss-Cross Rib Patterns
,”
Appl. Therm. Eng.
,
128
, pp.
415
425
.10.1016/j.applthermaleng.2017.09.036
You do not currently have access to this content.