Graphical Abstract Figure

This graphical abstract illustrates the structure of hexagonal boron nitride (h-BN) and hydroxylation of h-BN. The pristine h-BN exhibit a hexagonal lattice structure with alternating boron (B) and nitrogen (N) atoms. Upon hydroxylation, hydroxyl (-OH) groups are introduced at the edges and surfaces of the BN nanosheets, enhancing their reactivity and dispersibility. The hydroxylated BN nanosheets show improved interfacial interactions, which can lead to better thermal and mechanical properties in composite materials.

Graphical Abstract Figure

This graphical abstract illustrates the structure of hexagonal boron nitride (h-BN) and hydroxylation of h-BN. The pristine h-BN exhibit a hexagonal lattice structure with alternating boron (B) and nitrogen (N) atoms. Upon hydroxylation, hydroxyl (-OH) groups are introduced at the edges and surfaces of the BN nanosheets, enhancing their reactivity and dispersibility. The hydroxylated BN nanosheets show improved interfacial interactions, which can lead to better thermal and mechanical properties in composite materials.

Close modal

Abstract

This review provides a comprehensive overview of the recent progresses in flexible heat spreaders based on functionalized boron nitride nanosheets (f-BNNSs) and provides insights into the potential of this material for efficient thermal management solutions. The unique thermal properties of boron nitride nanosheets (BNNSs), such as high thermal conductivity and excellent mechanical flexibility, make them promising materials for heat dissipation. Various methods of functionalizing BNNSs to enhance their thermal and mechanical properties are discussed, including covalent functionalization and noncovalent functionalization. The numerous advanced methods to introduce f-BNNSs into polymers and the potential applications of the composites based on f-BNNSs in areas such as thermal management in electronic devices are also highlighted.

References

1.
Xu
,
X.
,
Hu
,
R.
,
Chen
,
M.
,
Dong
,
J.
,
Xiao
,
B.
,
Wang
,
Q.
, and
Wang
,
H.
,
2020
, “
3D Boron Nitride Foam Filled Epoxy Composites With Significantly Enhanced Thermal Conductivity by a Facial and Scalable Approach
,”
Chem. Eng. J.
,
397
, p.
125447
.10.1016/j.cej.2020.125447
2.
Chen
,
K.
,
Song
,
B.
,
Ravichandran
,
N. K.
,
Zheng
,
Q.
,
Chen
,
X.
,
Lee
,
H.
,
Sun
,
H.
, et al.,
2020
, “
Ultrahigh Thermal Conductivity in Isotope-Enriched Cubic Boron Nitride
,”
Science
,
367
(
6477
), pp.
555
559
.10.1126/science.aaz6149
3.
Lin
,
Y.
,
Chen
,
J.
,
Dong
,
S.
,
Wu
,
G.
,
Jiang
,
P.
, and
Huang
,
X.
,
2021
, “
Wet-Resilient Graphene Aerogel for Thermal Conductivity Enhancement in Polymer Nanocomposites
,”
J. Mater. Sci. Technol.
,
83
, pp.
219
227
.10.1016/j.jmst.2020.12.051
4.
Cui
,
Y.
,
Li
,
M.
, and
Hu
,
Y.
,
2020
, “
Emerging Interface Materials for Electronics Thermal Management: Experiments, Modeling, and New Opportunities
,”
J. Mater. Chem. C
,
8
(
31
), pp.
10568
10586
.10.1039/C9TC05415D
5.
Gong
,
P.
,
Li
,
L.
,
Fu
,
G-e.
,
Shu
,
S.
,
Li
,
M.
,
Wang
,
Y.
,
Qin
,
Y.
, et al.,
2022
, “
Highly Flexible Cellulose Nanofiber/Single-Crystal Nanodiamond Flake Heat Spreader Films for Heat Dissipation
,”
J. Mater. Chem. C
,
10
(
33
), pp.
12070
12079
.10.1039/D2TC01830F
6.
Wei
,
X.
,
Song
,
G.
,
Wang
,
B.
,
Li
,
M.
,
Qin
,
Y.
,
Li
,
L.
,
Cui
,
J.
, et al.,
2021
, “
Black Phosphorene-Cellulose Nanofiber Hybrid Paper as Flexible Heat Spreader
,”
2D Mater.
,
8
(
4
), p.
045029
.10.1088/2053-1583/ac207a
7.
Luo
,
F.
,
Yan
,
P.
,
Qian
,
Q.
,
Li
,
H.
,
Huang
,
B.
, and
Chen
,
Q.
,
2019
, “
Preparation of Layered Polyethylene Oxide/rGO Composite: Flexible Lateral Heat Spreaders
,”
Polymers
,
11
(
3
), p.
532
.10.3390/polym11030532
8.
Bae
,
S. H.
,
Shabani
,
R.
,
Lee
,
J. B.
,
Baeck
,
S. J.
,
Cho
,
H. J.
, and
Ahn
,
J. H.
,
2014
, “
Graphene-Based Heat Spreader for Flexible Electronic Devices
,”
IEEE Trans. Electron Devices
,
61
(
12
), pp.
4171
4175
.10.1109/TED.2014.2364606
9.
Cui
,
Y.
,
Qin
,
Z.
,
Wu
,
H.
,
Li
,
M.
, and
Hu
,
Y.
,
2021
, “
Flexible Thermal Interface Based on Self-Assembled Boron Arsenide for High-Performance Thermal Management
,”
Nat. Commun.
,
12
(
1
), p.
1284
.10.1038/s41467-021-21531-7
10.
Hsu
,
C.-C.
,
Wu
,
W.-L.
,
Su
,
H.-Z.
, and
Fuh
,
Y.-K.
,
2021
, “
Sheet-Bulk Metal Forming of Copper Heat Spreader With Controllable Deformation Zone
,”
J. Mater. Res. Technol.
,
12
, pp.
316
332
.10.1016/j.jmrt.2021.02.092
11.
Ryu
,
S.
,
Han
,
J.
,
Kim
,
J.
,
Lee
,
C.
, and
Nam
,
Y.
,
2017
, “
Enhanced Heat Transfer Using Metal Foam Liquid Supply Layers for Micro Heat Spreaders
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2338
2345
.10.1016/j.ijheatmasstransfer.2017.01.071
12.
Song
,
N.
,
Cui
,
S.
,
Jiao
,
D.
,
Hou
,
X.
,
Ding
,
P.
, and
Shi
,
L.
,
2017
, “
Layered Nanofibrillated Cellulose Hybrid Films as Flexible Lateral Heat Spreaders: The Effect of Graphene Defect
,”
Carbon
,
115
, pp.
338
346
.10.1016/j.carbon.2017.01.017
13.
Xiong
,
K.
,
Yang
,
T.
,
Sun
,
Z.
,
Ma
,
C.
,
Wang
,
J.
,
Ge
,
X.
,
Qiao
,
W.
, and
Ling
,
L.
,
2024
, “
Modified Graphene Film Powder Scraps for re-Preparation of Highly Thermally Conductive Flexible Graphite Heat Spreaders
,”
Carbon
,
219
, p.
118827
.10.1016/j.carbon.2024.118827
14.
Zhang
,
J.
,
Kong
,
X.
,
Wang
,
Y.
,
Zhang
,
Z.
,
Li
,
L.
,
Xu
,
K.
,
Li
,
M.
, et al.,
2023
, “
Recycled and Flexible Boron Nitride Heat Spread Film With High Thermal Conductivity
,”
J. Mater. Chem. C
,
11
(
39
), pp.
13204
13212
.10.1039/D3TC02761A
15.
Qin
,
Y.
,
Li
,
L.
,
Li
,
M.
,
Wei
,
X.
,
Xiong
,
S.
,
Xia
,
J.
,
Kong
,
X.
, et al.,
2022
, “
Flexible MXene/Copper/Cellulose Nanofiber Heat Spreader Films With Enhanced Thermal Conductivity
,”
Nanotechnol. Rev.
,
11
(
1
), pp.
1583
1591
.10.1515/ntrev-2022-0096
16.
Huang
,
T.
,
Wang
,
T.
,
Jin
,
J.
,
Chen
,
M.
, and
Wu
,
L.
,
2023
, “
Design of Silicon Rubber/BN Film With High Through-Plane Thermal Conductivity and Ultra-Low Contact Resistance
,”
Chem. Eng. J.
,
469
, p.
143874
.10.1016/j.cej.2023.143874
17.
Weng
,
Q.
,
Wang
,
X.
,
Wang
,
X.
,
Bando
,
Y.
, and
Golberg
,
D.
,
2016
, “
Functionalized Hexagonal Boron Nitride Nanomaterials: Emerging Properties and Applications
,”
Chem. Soc. Rev.
,
45
(
14
), pp.
3989
4012
.10.1039/C5CS00869G
18.
Roy
,
S.
,
Zhang
,
X.
,
Puthirath
,
A. B.
,
Meiyazhagan
,
A.
,
Bhattacharyya
,
S.
,
Rahman
,
M. M.
,
Babu
,
G.
, et al.,
2021
, “
Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride
,”
Adv. Mater.
,
33
(
44
), p.
2101589
.10.1002/adma.202101589
19.
Zhou
,
Z.
,
Zhang
,
K.
,
Xiao
,
G.
,
Wang
,
Y.
,
He
,
Q.
,
Wang
,
N.
,
Wu
,
L.
, and
Yao
,
Y.
,
2023
, “
Surface Growth of Boron Nitride Nanotubes Through Boron Source Design
,”
Adv. Funct. Mater.
,
33
(
48
), p.
2304450
.10.1002/adfm.202304450
20.
Kim
,
J. H.
,
Pham
,
T. V.
,
Hwang
,
J. H.
,
Kim
,
C. S.
, and
Kim
,
M. J.
,
2018
, “
Boron Nitride Nanotubes: Synthesis and Applications
,”
Nano Convergence
,
5
(
1
), p.
17
.10.1186/s40580-018-0149-y
21.
Han
,
G.
,
Zhao
,
X.
,
Feng
,
Y.
,
Ma
,
J.
,
Zhou
,
K.
,
Shi
,
Y.
,
Liu
,
C.
, and
Xie
,
X.
,
2021
, “
Highly Flame-Retardant Epoxy-Based Thermal Conductive Composites With Functionalized Boron Nitride Nanosheets Exfoliated by One-Step Ball Milling
,”
Chem. Eng. J.
,
407
, p.
127099
.10.1016/j.cej.2020.127099
22.
Wang
,
J.
,
Chen
,
H.
,
Li
,
X.
,
Zhang
,
C.
,
Yu
,
W.
,
Zhou
,
L.
,
Yang
,
Q.
,
Shi
,
Z.
, and
Xiong
,
C.
,
2020
, “
Flexible Dielectric Film With High Energy Density Based on Chitin/Boron Nitride Nanosheets
,”
Chem. Eng. J.
,
383
, p.
123147
.10.1016/j.cej.2019.123147
23.
Fan
,
Y.
,
Yang
,
Z.
,
Hua
,
W.
,
Liu
,
D.
,
Tao
,
T.
,
Rahman
,
M. M.
,
Lei
,
W.
,
Huang
,
S.
, and
Chen
,
Y.
,
2017
, “
Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long-Life Lithium–Sulfur Batteries
,”
Adv. Energy Mater.
,
7
(
13
), p.
1602380
.10.1002/aenm.201602380
24.
Chen
,
S.
,
Xu
,
R.
,
Liu
,
J.
,
Zou
,
X.
,
Qiu
,
L.
,
Kang
,
F.
,
Liu
,
B.
, and
Cheng
,
H.-M.
,
2019
, “
Simultaneous Production and Functionalization of Boron Nitride Nanosheets by Sugar-Assisted Mechanochemical Exfoliation
,”
Adv. Mater.
,
31
(
10
), p.
1804810
.10.1002/adma.201804810
25.
Li
,
Y.
,
Huang
,
T.
,
Chen
,
M.
, and
Wu
,
L.
,
2022
, “
Simultaneous Exfoliation and Functionalization of Large-Sized Boron Nitride Nanosheets for Enhanced Thermal Conductivity of Polymer Composite Film
,”
Chem. Eng. J.
,
442
, p.
136237
.10.1016/j.cej.2022.136237
26.
Guerra
,
V.
,
Wan
,
C.
, and
McNally
,
T.
,
2019
, “
Thermal Conductivity of 2D Nano-Structured Boron Nitride (BN) and Its Composites With Polymers
,”
Prog. Mater. Sci.
,
100
, pp.
170
186
.10.1016/j.pmatsci.2018.10.002
27.
Chen
,
J.
,
Huang
,
X.
,
Sun
,
B.
, and
Jiang
,
P.
,
2019
, “
Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability
,”
ACS Nano
,
13
(
1
), pp.
337
345
.10.1021/acsnano.8b06290
28.
Xiao
,
F.
,
Naficy
,
S.
,
Casillas
,
G.
,
Khan
,
M. H.
,
Katkus
,
T.
,
Jiang
,
L.
,
Liu
,
H.
,
Li
,
H.
, and
Huang
,
Z.
,
2015
, “
Hydrogels: Edge-Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal Response of Hydrogels (Adv. Mater. 44/2015)
,”
Adv. Mater.
,
27
(
44
), pp.
7247
7247
.10.1002/adma.201570303
29.
Jo
,
I.
,
Pettes
,
M. T.
,
Kim
,
J.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Yao
,
Z.
, and
Shi
,
L.
,
2013
, “
Thermal Conductivity and Phonon Transport in Suspended Few-Layer Hexagonal Boron Nitride
,”
Nano Lett.
,
13
(
2
), pp.
550
554
.10.1021/nl304060g
30.
Li
,
Q.
,
Chen
,
L.
,
Gadinski
,
M. R.
,
Zhang
,
S.
,
Zhang
,
G.
,
Li
,
H. U.
,
Iagodkine
,
E.
, et al.,
2015
, “
Flexible High-Temperature Dielectric Materials From Polymer Nanocomposites
,”
Nature
,
523
(
7562
), pp.
576
579
.10.1038/nature14647
31.
Fang
,
Y.
,
Dong
,
J.
,
Zhao
,
X.
,
Chen
,
T.
,
Xiang
,
L.
,
Xie
,
Y.
, and
Zhang
,
Q.
,
2020
, “
Covalently Linked Polydopamine-Modified Boron Nitride Nanosheets/Polyimide Composite Fibers With Enhanced Heat Diffusion and Mechanical Behaviors
,”
Compos. Part B: Eng.
,
199
, p.
108281
.10.1016/j.compositesb.2020.108281
32.
Jung
,
J. H.
,
Park
,
C.-H.
, and
Ihm
,
J.
,
2018
, “
A Rigorous Method of Calculating Exfoliation Energies From First Principles
,”
Nano Lett.
,
18
(
5
), pp.
2759
2765
.10.1021/acs.nanolett.7b04201
33.
Liu
,
Z.
,
Dibaji
,
A.
,
Li
,
D.
,
Mateti
,
S.
,
Liu
,
J.
,
Yan
,
F.
,
Barrow
,
C. J.
,
Chen
,
Y.
,
Ariga
,
K.
, and
Yang
,
W.
,
2021
, “
Challenges and Solutions in Surface Engineering and Assembly of Boron Nitride Nanosheets
,”
Mater. Today
,
44
, pp.
194
210
.10.1016/j.mattod.2020.11.020
34.
Liu
,
X.
,
Ji
,
T.
,
Li
,
N.
,
Liu
,
Y.
,
Yin
,
J.
,
Su
,
B.
,
Zhao
,
J.
,
Li
,
Y.
,
Mo
,
G.
, and
Wu
,
Z.
,
2019
, “
Preparation of Polyimide Composites Reinforced With Oxygen Doped Boron Nitride Nano-Sheet as Multifunctional Materials
,”
Mater. Des.
,
180
, p.
107963
.10.1016/j.matdes.2019.107963
35.
Li
,
R.
,
Yang
,
X.
,
Li
,
J.
,
Shen
,
Y.
,
Zhang
,
L.
,
Lu
,
R.
,
Wang
,
C.
,
Zheng
,
X.
,
Chen
,
H.
, and
Zhang
,
T.
,
2022
, “
Review on Polymer Composites With High Thermal Conductivity and Low Dielectric Properties for Electronic Packaging
,”
Mater. Today Phys.
,
22
, p.
100594
.10.1016/j.mtphys.2021.100594
36.
Tian
,
X.
,
Wu
,
N.
,
Zhang
,
B.
,
Wang
,
Y.
,
Geng
,
Z.
, and
Li
,
Y.
,
2021
, “
Glycine Functionalized Boron Nitride Nanosheets With Improved Dispersibility and Enhanced Interaction With Matrix for Thermal Composites
,”
Chem. Eng. J.
,
408
, p.
127360
.10.1016/j.cej.2020.127360
37.
Zhao
,
H.-R.
,
Ding
,
J.-H.
,
Shao
,
Z.-Z.
,
Xu
,
B.-Y.
,
Zhou
,
Q.-B.
, and
Yu
,
H.-B.
,
2019
, “
High-Quality Boron Nitride Nanosheets and Their Bioinspired Thermally Conductive Papers
,”
ACS Appl. Mater. Interfaces
,
11
(
40
), pp.
37247
37255
.10.1021/acsami.9b11180
38.
Wadhwa
,
G. K.
,
Late
,
D. J.
,
Charhate
,
S.
, and
Sankhyan
,
S. B.
,
2024
, “
1D and 2D Boron Nitride Nano Structures: A Critical Analysis for Emerging Applications in the Field of Nanocomposites
,”
ACS Omega
,
9
(
25
), pp.
26737
26761
.10.1021/acsomega.3c10217
39.
Lin
,
Y.
, and
Connell
,
J. W.
,
2012
, “
Advances in 2D Boron Nitride Nanostructures: Nanosheets, Nanoribbons, Nanomeshes, and Hybrids With Graphene
,”
Nanoscale
,
4
(
22
), pp.
6908
6939
.10.1039/c2nr32201c
40.
Yin
,
C.-G.
,
Ma
,
Y.
,
Liu
,
Z.-J.
,
Fan
,
J.-C.
,
Shi
,
P.-H.
,
Xu
,
Q.-J.
, and
Min
,
Y.-L.
,
2019
, “
Multifunctional Boron Nitride Nanosheet/Polymer Composite Nanofiber Membranes
,”
Polymer
,
162
, pp.
100
107
.10.1016/j.polymer.2018.12.038
41.
Hu
,
D.
,
Ma
,
W.
,
Zhang
,
Z.
,
Ding
,
Y.
, and
Wu
,
L.
,
2020
, “
Dual Bio-Inspired Design of Highly Thermally Conductive and Superhydrophobic Nanocellulose Composite Films
,”
ACS Appl. Mater. Interfaces
,
12
(
9
), pp.
11115
11125
.10.1021/acsami.0c01425
42.
Lee
,
D.
,
Park
,
J.-J.
,
Lee
,
M.-K.
, and
Lee
,
G.-J.
,
2017
, “
Aging-Resistant Nanofluids Containing Covalent Functionalized Boron Nitride Nanosheets
,”
Nanotechnology
,
28
(
40
), p.
405704
.10.1088/1361-6528/aa8615
43.
Lee
,
D.
,
Song
,
S. H.
,
Hwang
,
J.
,
Jin
,
S. H.
,
Park
,
K. H.
,
Kim
,
B. H.
,
Hong
,
S. H.
, and
Jeon
,
S.
,
2013
, “
Enhanced Mechanical Properties of Epoxy Nanocomposites by Mixing Noncovalently Functionalized Boron Nitride Nanoflakes
,”
Small
,
9
(
15
), pp.
2602
2610
.10.1002/smll.201203214
44.
Tian
,
R.
,
Jia
,
X.
,
Lan
,
M.
,
Yang
,
J.
,
Wang
,
S.
,
Li
,
Y.
,
Shao
,
D.
,
Feng
,
L.
, and
Song
,
H.
,
2022
, “
Efficient Exfoliation and Functionalization of Hexagonal Boron Nitride Using Recyclable Ionic Liquid Crystal for Thermal Management Applications
,”
Chem. Eng. J.
,
446
, p.
137255
.10.1016/j.cej.2022.137255
45.
Hou
,
J.
,
Li
,
G.
,
Yang
,
N.
,
Qin
,
L.
,
Grami
,
M. E.
,
Zhang
,
Q.
,
Wang
,
N.
, and
Qu
,
X.
,
2014
, “
Preparation and Characterization of Surface Modified Boron Nitride Epoxy Composites With Enhanced Thermal Conductivity
,”
RSC Adv.
,
4
(
83
), pp.
44282
44290
.10.1039/C4RA07394K
46.
Rasul
,
M. G.
,
Kiziltas
,
A.
,
Bin Hoque
,
M. S.
,
Banik
,
A.
,
Hopkins
,
P. E.
,
Tan
,
K.-T.
,
Arfaei
,
B.
, and
Shahbazian-Yassar
,
R.
,
2022
, “
Improvement of the Thermal Conductivity and Tribological Properties of Polyethylene by Incorporating Functionalized Boron Nitride Nanosheets
,”
Tribol. Int.
,
165
, p.
107277
.10.1016/j.triboint.2021.107277
47.
Wu
,
N.
,
Yang
,
W.
,
Li
,
H.
,
Che
,
S.
,
Gao
,
C.
,
Jiang
,
B.
,
Li
,
Z.
,
Xu
,
C.
,
Wang
,
X.
, and
Li
,
Y.
,
2022
, “
Amino Acid Functionalized Boron Nitride Nanosheets Towards Enhanced Thermal and Mechanical Performance of Epoxy Composite
,”
J. Colloid Interface Sci.
,
619
, pp.
388
398
.10.1016/j.jcis.2022.03.115
48.
Lee
,
H.
,
Lee
,
J.
,
Joo
,
S. H.
,
Kang
,
S. J.
,
Kwak
,
S. K.
,
Yu
,
S.
, and
Park
,
C.
,
2020
, “
Dual Functionalization of Hexagonal Boron Nitride Nanosheets Using Pyrene-Tethered Poly(4-Vinylpyridine) for Stable Dispersion and Facile Device Incorporation
,”
ACS Appl. Nano Mater.
,
3
(
8
), pp.
7633
7642
.10.1021/acsanm.0c01262
49.
Cui
,
Z.
,
Oyer
,
A. J.
,
Glover
,
A. J.
,
Schniepp
,
H. C.
, and
Adamson
,
D. H.
,
2014
, “
Large Scale Thermal Exfoliation and Functionalization of Boron Nitride
,”
Small
,
10
(
12
), pp.
2352
2355
.10.1002/smll.201303236
50.
Sevik
,
C.
,
Kinaci
,
A.
,
Haskins
,
J. B.
, and
Çağın
,
T.
,
2012
, “
Influence of Disorder on Thermal Transport Properties of Boron Nitride Nanostructures
,”
Phys. Rev. B
,
86
(
7
), p.
075403
.10.1103/PhysRevB.86.075403
51.
Yang
,
K.
,
Chen
,
Y.
,
Xie
,
Y.
,
Wei
,
X. L.
,
Ouyang
,
T.
, and
Zhong
,
J.
,
2011
, “
Effect of Triangle Vacancy on Thermal Transport in Boron Nitride Nanoribbons
,”
Solid State Commun.
,
151
(
6
), pp.
460
464
.10.1016/j.ssc.2011.01.002
52.
Yang
,
N.
,
Zeng
,
X.
,
Lu
,
J.
,
Sun
,
R.
, and
Wong
,
C.-P.
,
2018
, “
Effect of Chemical Functionalization on the Thermal Conductivity of 2D Hexagonal Boron Nitride
,”
Appl. Phys. Lett.
,
113
(
17
), p.
171904
.10.1063/1.5050293
53.
Wu
,
K.
,
Liao
,
P.
,
Du
,
R.
,
Zhang
,
Q.
,
Chen
,
F.
, and
Fu
,
Q.
,
2018
, “
Preparation of a Thermally Conductive Biodegradable Cellulose Nanofiber/Hydroxylated Boron Nitride Nanosheet Film: The Critical Role of Edge-Hydroxylation
,”
J. Mater. Chem. A
,
6
(
25
), pp.
11863
11873
.10.1039/C8TA03642J
54.
Ma
,
X.
,
Wu
,
S.
,
Yi
,
Z.
,
Peng
,
D.
, and
Zhang
,
J.
,
2019
, “
The Effect Mechanism of Functionalization on Thermal Conductivity of Boron Nitride Nanosheets/Paraffin Composites
,”
Int. J. Heat Mass Transfer
,
137
, pp.
790
798
.10.1016/j.ijheatmasstransfer.2019.03.168
55.
Liu
,
Z.
,
Sun
,
X.
,
Xie
,
J.
,
Zhang
,
X.
, and
Li
,
J.
,
2022
, “
Interfacial Thermal Transport Properties and Its Effect on Thermal Conductivity of Functionalized BNNS/Epoxy Composites
,”
Int. J. Heat Mass Transfer
,
195
, p.
123031
.10.1016/j.ijheatmasstransfer.2022.123031
56.
Adegun
,
M. H.
,
Chan
,
K.-Y.
,
Yang
,
J.
,
Venkatesan
,
H.
,
Kim
,
E.
,
Zhang
,
H.
,
Shen
,
X.
,
Yang
,
J.
, and
Kim
,
J.-K.
,
2023
, “
Anisotropic Thermally Superinsulating Boron Nitride Composite Aerogel for Building Thermal Management
,”
Compos. Part A: Appl. Sci. Manuf.
,
169
, p.
107522
.10.1016/j.compositesa.2023.107522
57.
Cai
,
W.
,
Hong
,
N.
,
Feng
,
X.
,
Zeng
,
W.
,
Shi
,
Y.
,
Zhang
,
Y.
,
Wang
,
B.
, and
Hu
,
Y.
,
2017
, “
A Facile Strategy to Simultaneously Exfoliate and Functionalize Boron Nitride Nanosheets Via Lewis Acid-Base Interaction
,”
Chem. Eng. J.
,
330
, pp.
309
321
.10.1016/j.cej.2017.07.162
58.
Chen
,
Y.
,
Zhang
,
H.
,
Chen
,
J.
,
Guo
,
Y.
,
Jiang
,
P.
,
Gao
,
F.
,
Bao
,
H.
, and
Huang
,
X.
,
2022
, “
Thermally Conductive but Electrically Insulating Polybenzazole Nanofiber/Boron Nitride Nanosheets Nanocomposite Paper for Heat Dissipation of 5G Base Stations and Transformers
,”
ACS Nano
,
16
(
9
), pp.
14323
14333
.10.1021/acsnano.2c04534
59.
Zeng
,
X.
,
Yao
,
Y.
,
Gong
,
Z.
,
Wang
,
F.
,
Sun
,
R.
,
Xu
,
J.
, and
Wong
,
C.-P.
,
2015
, “
Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement
,”
Small
,
11
(
46
), pp.
6205
6213
.10.1002/smll.201502173
60.
Oh
,
H.
, and
Kim
,
J.
,
2019
, “
Fabrication of Polymethyl Methacrylate Composites With Silanized Boron Nitride by in-Situ Polymerization for High Thermal Conductivity
,”
Compos. Sci. Technol.
,
172
, pp.
153
162
.10.1016/j.compscitech.2019.01.021
61.
Tian
,
Y.
,
Xu
,
B.
,
Yu
,
D.
,
Ma
,
Y.
,
Wang
,
Y.
,
Jiang
,
Y.
,
Hu
,
W.
, et al.,
2013
, “
Ultrahard Nanotwinned Cubic Boron Nitride
,”
Nature
,
493
(
7432
), pp.
385
388
.10.1038/nature11728
62.
Sōma
,
T.
,
Sawaoka
,
A.
, and
Saito
,
S.
,
1974
, “
Characterization of Wurtzite Type Boron Nitride Synthesized by Shock Compression
,”
Mater. Res. Bull.
,
9
(
6
), pp.
755
762
.10.1016/0025-5408(74)90110-X
63.
Eichler
,
J.
, and
Lesniak
,
C.
,
2008
, “
Boron Nitride (BN) and BN Composites for High-Temperature Applications
,”
J. Eur. Ceram. Soc.
,
28
(
5
), pp.
1105
1109
.10.1016/j.jeurceramsoc.2007.09.005
64.
Lee
,
M.
,
Lee
,
E.
,
Byun
,
S.
,
Kim
,
J.
,
Yun
,
J.
,
So
,
S.
,
Lee
,
H.
, et al.,
2022
, “
r-BN: A Fine Hyperbolic Dispersion Modulator for Bulk Metamaterials Consisting of Heterostructured Nanohybrids of h-BN and Graphene
,”
J. Solid State Chem.
,
309
, p.
122937
.10.1016/j.jssc.2022.122937
65.
Pakdel
,
A.
,
Bando
,
Y.
, and
Golberg
,
D.
,
2014
, “
Nano Boron Nitride Flatland
,”
Chem. Soc. Rev.
,
43
(
3
), pp.
934
959
.10.1039/C3CS60260E
66.
Sharker
,
S. M.
,
2019
, “
Hexagonal Boron Nitrides (White Graphene): A Promising Method for Cancer Drug Delivery
,”
Int. J. Nanomed.
,
14
, pp.
9983
9993
.10.2147/IJN.S205095
67.
Pakdel
,
A.
,
Zhi
,
C.
,
Bando
,
Y.
, and
Golberg
,
D.
,
2012
, “
Low-Dimensional Boron Nitride Nanomaterials
,”
Mater. Today
,
15
(
6
), pp.
256
265
.10.1016/S1369-7021(12)70116-5
68.
Jiang
,
P.
,
Qian
,
X.
,
Yang
,
R.
, and
Lindsay
,
L.
,
2018
, “
Anisotropic Thermal Transport in Bulk Hexagonal Boron Nitride
,”
Phys. Rev. Mater.
,
2
(
6
), p.
064005
.10.1103/PhysRevMaterials.2.064005
69.
Huang
,
T.
,
Zhang
,
X.
,
Wang
,
T.
,
Zhang
,
H.
,
Li
,
Y.
,
Bao
,
H.
,
Chen
,
M.
, and
Wu
,
L.
,
2023
, “
Self-Modifying Nanointerface Driving Ultrahigh Bidirectional Thermal Conductivity Boron Nitride-Based Composite Flexible Films
,”
Nano-Micro Lett.
,
15
(
1
), p.
2
.10.1007/s40820-022-00972-9
70.
Kong
,
X.
,
Chen
,
Y.
,
Yang
,
R.
,
Wang
,
Y.
,
Zhang
,
Z.
,
Li
,
M.
,
Chen
,
H.
, et al.,
2024
, “
Large-Scale Production of Boron Nitride Nanosheets for Flexible Thermal Interface Materials With Highly Thermally Conductive and Low Dielectric Constant
,”
Compos. Part B: Eng.
,
271
, p.
111164
.10.1016/j.compositesb.2023.111164
71.
Sharma
,
B. B.
, and
Parashar
,
A.
,
2020
, “
A Review on Thermo-Mechanical Properties of bi-Crystalline and Polycrystalline 2D Nanomaterials
,”
Crit. Rev. Solid State Mater. Sci.
,
45
(
2
), pp.
134
170
.10.1080/10408436.2019.1582003
72.
Song
,
X.
,
Hu
,
J.
, and
Zeng
,
H.
,
2013
, “
Two-Dimensional Semiconductors: Recent Progress and Future Perspectives
,”
J. Mater. Chem. C
,
1
(
17
), pp.
2952
2969
.10.1039/c3tc00710c
73.
Bhimanapati
,
G. R.
,
Kozuch
,
D.
, and
Robinson
,
J. A.
,
2014
, “
Large-Scale Synthesis and Functionalization of Hexagonal Boron Nitride Nanosheets
,”
Nanoscale
,
6
(
20
), pp.
11671
11675
.10.1039/C4NR01816H
74.
Huang
,
M. T.
, and
Ishida
,
H.
,
1999
, “
Investigation of the Boron Nitride/Polybenzoxazine Interphase
,”
J. Polym. Sci. Part B: Polym. Phys.
,
37
(
17
), pp.
2360
2372
.10.1002/(SICI)1099-0488(19990901)37:17<2360::AID-POLB7>3.0.CO;2-V
75.
Zhi
,
C. Y.
,
Bando
,
Y.
,
Terao
,
T.
,
Tang
,
C. C.
,
Kuwahara
,
H.
, and
Golberg
,
D.
,
2009
, “
Chemically Activated Boron Nitride Nanotubes
,”
Chem. Asian J.
,
4
(
10
), pp.
1536
1540
.10.1002/asia.200900158
76.
Li
,
X.
,
Hao
,
X.
,
Zhao
,
M.
,
Wu
,
Y.
,
Yang
,
J.
,
Tian
,
Y.
, and
Qian
,
G.
,
2013
, “
Exfoliation of Hexagonal Boron Nitride by Molten Hydroxides
,”
Adv. Mater.
,
25
(
15
), pp.
2200
2204
.10.1002/adma.201204031
77.
Xiao
,
F.
,
Naficy
,
S.
,
Casillas
,
G.
,
Khan
,
M. H.
,
Katkus
,
T.
,
Jiang
,
L.
,
Liu
,
H.
,
Li
,
H.
, and
Huang
,
Z.
,
2015
, “
Edge-Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal Response of Hydrogels
,”
Adv. Mater.
,
27
(
44
), pp.
7196
7203
.10.1002/adma.201502803
78.
Wu
,
F.
,
Yan
,
Z.
,
Chen
,
H.
,
Zhong
,
H.
,
Chen
,
H.
, and
Xiao
,
D.
,
2024
, “
Simultaneous Exfoliation and Functionalization of High-Aspect-Ratio Boron Nitride Nanosheets and Their Application in Composite Membranes for Fire-Warning Systems
,”
Mater. Lett.
,
361
, p.
136095
.10.1016/j.matlet.2024.136095
79.
Lei
,
W.
,
Mochalin
,
V. N.
,
Liu
,
D.
,
Qin
,
S.
,
Gogotsi
,
Y.
, and
Chen
,
Y.
,
2015
, “
Boron Nitride Colloidal Solutions, Ultralight Aerogels and Freestanding Membranes Through One-Step Exfoliation and Functionalization
,”
Nat. Commun.
,
6
(
1
), p.
8849
.10.1038/ncomms9849
80.
Çamurlu
,
H. E.
,
Mathur
,
S.
,
Arslan
,
O.
, and
Akarsu
,
E.
,
2016
, “
Modification of Hexagonal Boron Nitride Nanoparticles With Fluorosilane
,”
Ceram. Int.
,
42
(
5
), pp.
6312
6318
.10.1016/j.ceramint.2016.01.019
81.
Weng
,
Q.
,
Kvashnin
,
D. G.
,
Wang
,
X.
,
Cretu
,
O.
,
Yang
,
Y.
,
Zhou
,
M.
,
Zhang
,
C.
, et al.,
2017
, “
Tuning of the Optical, Electronic, and Magnetic Properties of Boron Nitride Nanosheets With Oxygen Doping and Functionalization
,”
Adv. Mater.
,
29
(
28
), p.
1700695
.10.1002/adma.201700695
82.
Lee
,
C. H.
,
Zhang
,
D.
, and
Yap
,
Y. K.
,
2012
, “
Functionalization, Dispersion, and Cutting of Boron Nitride Nanotubes in Water
,”
J. Phys. Chem. C
,
116
(
2
), pp.
1798
1804
.10.1021/jp2112999
83.
Lin
,
Y.
,
Williams
,
T. V.
,
Xu
,
T.-B.
,
Cao
,
W.
,
Elsayed-Ali
,
H. E.
, and
Connell
,
J. W.
,
2011
, “
Aqueous Dispersions of Few-Layered and Monolayered Hexagonal Boron Nitride Nanosheets From Sonication-Assisted Hydrolysis: Critical Role of Water
,”
J. Phys. Chem. C
,
115
(
6
), pp.
2679
2685
.10.1021/jp110985w
84.
Lee
,
D.
,
Lee
,
B.
,
Park
,
K. H.
,
Ryu
,
H. J.
,
Jeon
,
S.
, and
Hong
,
S. H.
,
2015
, “
Scalable Exfoliation Process for Highly Soluble Boron Nitride Nanoplatelets by Hydroxide-Assisted Ball Milling
,”
Nano Lett.
,
15
(
2
), pp.
1238
1244
.10.1021/nl504397h
85.
Bai
,
Y.
,
Zhang
,
J.
,
Wang
,
Y.
,
Cao
,
Z.
,
An
,
L.
,
Zhang
,
B.
,
Yu
,
Y.
,
Zhang
,
J.
, and
Wang
,
C.
,
2019
, “
Ball Milling of Hexagonal Boron Nitride Microflakes in Ammonia Fluoride Solution Gives Fluorinated Nanosheets That Serve as Effective Water-Dispersible Lubricant Additives
,”
ACS Appl. Nano Mater.
,
2
(
5
), pp.
3187
3195
.10.1021/acsanm.9b00502
86.
Song
,
Q.
,
Wang
,
B.
,
Li
,
W.
,
Liu
,
W.
,
Wu
,
S.
,
Du
,
Y.
, and
Wang
,
Y.
,
2022
, “
Hydroxyl and Amino Bifunctionalized Boron Nitride Nanosheets for High-Strength and Thermoconductive Composite Films
,”
ACS Appl. Nano Mater.
,
5
(
12
), pp.
17693
17701
.10.1021/acsanm.2c03605
87.
Li
,
L. H.
,
Chen
,
Y.
,
Behan
,
G.
,
Zhang
,
H.
,
Petravic
,
M.
, and
Glushenkov
,
A. M.
,
2011
, “
Large-Scale Mechanical Peeling of Boron Nitride Nanosheets by Low-Energy Ball Milling
,”
J. Mater. Chem.
,
21
(
32
), pp.
11862
11866
.10.1039/c1jm11192b
88.
Wu
,
K.
,
Fang
,
J.
,
Ma
,
J.
,
Huang
,
R.
,
Chai
,
S.
,
Chen
,
F.
, and
Fu
,
Q.
,
2017
, “
Achieving a Collapsible, Strong, and Highly Thermally Conductive Film Based on Oriented Functionalized Boron Nitride Nanosheets and Cellulose Nanofiber
,”
ACS Appl. Mater. Interfaces
,
9
(
35
), pp.
30035
30045
.10.1021/acsami.7b08214
89.
Muratov
,
D. S.
,
Kuznetsov
,
D. V.
,
Il'inykh
,
I. A.
,
Burmistrov
,
IN.
, and
Mazov
,
IN.
,
2015
, “
Thermal Conductivity of Polypropylene Composites Filled With Silane-Modified Hexagonal BN
,”
Compos. Sci. Technol.
,
111
, pp.
40
43
.10.1016/j.compscitech.2015.03.003
90.
Shi
,
X.
,
Wang
,
K.
,
Tian
,
J.
,
Yin
,
X.
,
Guo
,
B.
,
Xi
,
G.
,
Wang
,
W.
, and
Wu
,
W.
,
2020
, “
Few-Layer Hydroxyl-Functionalized Boron Nitride Nanosheets for Nanoscale Thermal Management
,”
ACS Appl. Nano Mater.
,
3
(
3
), pp.
2310
2321
.10.1021/acsanm.9b02427
91.
Zhou
,
S.
,
Xu
,
T.
,
Jiang
,
F.
,
Song
,
N.
, and
Ding
,
P.
,
2021
, “
High-Performance Polyamide-Imide Films: Effect of Functionalization Degree of BN Nanosheets
,”
Compos. Sci. Technol.
,
213
, p.
108907
.10.1016/j.compscitech.2021.108907
92.
Sainsbury
,
T.
,
Satti
,
A.
,
May
,
P.
,
Wang
,
Z.
,
McGovern
,
I.
,
Gun'ko
,
Y. K.
, and
Coleman
,
J.
,
2012
, “
Oxygen Radical Functionalization of Boron Nitride Nanosheets
,”
J. Am. Chem. Soc.
,
134
(
45
), pp.
18758
18771
.10.1021/ja3080665
93.
Pakdel
,
A.
,
Bando
,
Y.
, and
Golberg
,
D.
,
2014
, “
Plasma-Assisted Interface Engineering of Boron Nitride Nanostructure Films
,”
ACS Nano
,
8
(
10
), pp.
10631
10639
.10.1021/nn5041729
94.
Wang
,
W.
,
Zhao
,
M.
,
Jiang
,
D.
,
Zhou
,
X.
, and
He
,
J.
,
2022
, “
Amino Functionalized Boron Nitride and Enhanced Thermal Conductivity of Epoxy Composites Via Combining Mixed Sizes of Fillers
,”
Ceram. Int.
,
48
(
2
), pp.
2763
2770
.10.1016/j.ceramint.2021.10.063
95.
Liang
,
G.
,
Sun
,
G.
,
Bi
,
J.
,
Wang
,
W.
,
Yang
,
X.
, and
Li
,
Y.
,
2021
, “
Mechanical and Dielectric Properties of Functionalized Boron Nitride Nanosheets/Silicon Nitride Composites
,”
Ceram. Int.
,
47
(
2
), pp.
2058
2067
.10.1016/j.ceramint.2020.09.038
96.
Yang
,
F.
,
Sun
,
X.
,
Zhang
,
X.
, and
Yao
,
Z.
,
2021
, “
Polyethylene Glycol Covalently Modified the Corroded Hexagonal Boron Nitride to Improve the Thermal Conductivity of Epoxy Composites
,”
Appl. Surf. Sci.
,
569
, p.
151094
.10.1016/j.apsusc.2021.151094
97.
Sainsbury
,
T.
,
O'Neill
,
A.
,
Passarelli
,
M. K.
,
Seraffon
,
M.
,
Gohil
,
D.
,
Gnaniah
,
S.
,
Spencer
,
S. J.
,
Rae
,
A.
, and
Coleman
,
J. N.
,
2014
, “
Dibromocarbene Functionalization of Boron Nitride Nanosheets: Toward Band Gap Manipulation and Nanocomposite Applications
,”
Chem. Mater.
,
26
(
24
), pp.
7039
7050
.10.1021/cm503475t
98.
Yang
,
N.
,
Xu
,
C.
,
Hou
,
J.
,
Yao
,
Y.
,
Zhang
,
Q.
,
Grami
,
M. E.
,
He
,
L.
,
Wang
,
N.
, and
Qu
,
X.
,
2016
, “
Preparation and Properties of Thermally Conductive Polyimide/Boron Nitride Composites
,”
RSC Adv.
,
6
(
22
), pp.
18279
18287
.10.1039/C6RA01084A
99.
Zhao
,
H.-R.
,
Ding
,
J.-H.
, and
Yu
,
H.-B.
,
2018
, “
Phosphorylated Boron Nitride Nanosheets as Highly Effective Barrier Property Enhancers
,”
Ind. Eng. Chem. Res.
,
57
(
42
), pp.
14096
14105
.10.1021/acs.iecr.8b03220
100.
Wang
,
L.
,
Han
,
W.
,
Ge
,
C.
,
Zhang
,
R.
,
Bai
,
Y.
, and
Zhang
,
X.
,
2019
, “
Covalent Functionalized Boron Nitride Nanosheets as Efficient Lubricant Oil Additives
,”
Adv. Mater. Interfaces
,
6
(
21
), p.
1901172
.10.1002/admi.201901172
101.
de los Reyes
,
C. A.
,
Hernández
,
K.
,
Martínez-Jiménez
,
C.
,
Walz Mitra
,
K. L.
,
Ginestra
,
C.
,
Smith McWilliams
,
A. D.
,
Pasquali
,
M.
, and
Martí
,
A. A.
,
2019
, “
Tunable Alkylation of White Graphene (Hexagonal Boron Nitride) Using Reductive Conditions
,”
J. Phys. Chem. C
,
123
(
32
), pp.
19725
19733
.10.1021/acs.jpcc.9b05416
102.
Sun
,
C.
,
Zhao
,
J.
,
Zhang
,
D.
,
Guo
,
H.
,
Wang
,
X.
, and
Hu
,
H.
,
2020
, “
Covalent Functionalization of Boron Nitride Nanosheets Via Reductive Activation
,”
Nanoscale
,
12
(
35
), pp.
18379
18389
.10.1039/D0NR02850A
103.
He
,
Z.
,
Zhao
,
J.
,
Li
,
F.
,
Zhang
,
D.
,
Guo
,
F.
,
Guo
,
H.
,
Wang
,
X.
, and
Hu
,
H.
,
2021
, “
In Situ Synthesis of Polymer-Modified Boron Nitride Nanosheets Via Anionic Polymerization
,”
Appl. Surf. Sci.
,
537
, p.
147966
.10.1016/j.apsusc.2020.147966
104.
Bayır
,
S.
,
Semerci
,
E.
, and
Erdogan Bedri
,
T.
,
2021
, “
Preparation of Novel Thermal Conductive Nanocomposites by Covalent Bonding Between Hexagonal Boron Nitride Nanosheet and Well-Defined Polymer Matrix
,”
Compos. Part A: Appl. Sci. Manuf.
,
146
, p.
106406
.10.1016/j.compositesa.2021.106406
105.
Lin
,
Y.
,
Williams
,
T. V.
,
Cao
,
W.
,
Elsayed-Ali
,
H. E.
, and
Connell
,
J. W.
,
2010
, “
Defect Functionalization of Hexagonal Boron Nitride Nanosheets
,”
J. Phys. Chem. C
,
114
(
41
), pp.
17434
17439
.10.1021/jp105454w
106.
Wu
,
H.
, and
Kessler
,
M. R.
,
2015
, “
Multifunctional Cyanate Ester Nanocomposites Reinforced by Hexagonal Boron Nitride After Noncovalent Biomimetic Functionalization
,”
ACS Appl. Mater. Interfaces
,
7
(
10
), pp.
5915
5926
.10.1021/acsami.5b00147
107.
Wang
,
Z.
,
Wen
,
Y.
,
Zhao
,
S.
,
Zhang
,
W.
,
Ji
,
Y.
,
Zhang
,
S.
, and
Li
,
J.
,
2019
, “
Soy Protein as a Sustainable Surfactant to Functionalize Boron Nitride Nanosheets and Its Application for Preparing Thermally Conductive Biobased Composites
,”
Ind. Crops Prod.
,
137
, pp.
239
247
.10.1016/j.indcrop.2019.04.054
108.
Xie
,
S.-Y.
,
Wang
,
W.
,
Fernando
,
K. A. S.
,
Wang
,
X.
,
Lin
,
Y.
, and
Sun
,
Y.-P.
,
2005
, “
Solubilization of Boron Nitride Nanotubes
,”
Chem. Commun.
, (
29
), pp.
3670
3672
.10.1039/b505330g
109.
Wang
,
B.
,
Ji
,
H.
,
Zhang
,
X.
, and
Qu
,
X.
,
2021
, “
Preparation of Boron Nitride Nanosheets Via Polyethyleneimine Assisted Sand Milling: Towards Thermal Conductivity and Insulation Applications
,”
RSC Adv.
,
11
(
61
), pp.
38374
38382
.10.1039/D1RA05878A
110.
Gao
,
Z.
,
Zhi
,
C.
,
Bando
,
Y.
,
Golberg
,
D.
, and
Serizawa
,
T.
,
2010
, “
Isolation of Individual Boron Nitride Nanotubes Via Peptide Wrapping
,”
J. Am. Chem. Soc.
,
132
(
14
), pp.
4976
4977
.10.1021/ja910244b
111.
Dai
,
W.
,
Wang
,
Y.
,
Li
,
M.
,
Chen
,
L.
,
Yan
,
Q.
,
Yu
,
J.
,
Jiang
,
N.
, and
Lin
,
C.-T.
,
2024
, “
2D Materials-Based Thermal Interface Materials: Structure, Properties, and Applications
,”
Adv. Mater.
,
36
(
37
), p.
2311335
.10.1002/adma.202311335
112.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.10.1021/nl0731872
113.
Balandin
,
A. A.
,
2011
, “
Thermal Properties of Graphene and Nanostructured Carbon Materials
,”
Nat. Mater.
,
10
(
8
), pp.
569
581
.10.1038/nmat3064
114.
Moon
,
J.-Y.
,
Kim
,
M.
,
Kim
,
S.-I.
,
Xu
,
S.
,
Choi
,
J.-H.
,
Whang
,
D.
,
Watanabe
,
K.
, et al.,
2020
, “
Layer-Engineered Large-Area Exfoliation of Graphene
,”
Sci. Adv.
,
6
(
44
), p.
eabc6601
.10.1126/sciadv.abc6601
115.
Wen
,
C.
,
Liao
,
Q.
,
Cui
,
Z.
,
Chen
,
Z.
,
Liu
,
H.
,
Xiong
,
R.
, and
Sa
,
B.
,
2023
, “
Exfoliation Behavior and Superior Photothermal Conversion Performance of MXenes Beyond Ti3C2Tx
,”
Chem. Eng. J.
,
472
, p.
144921
.10.1016/j.cej.2023.144921
116.
Yu
,
W.
,
Sisi
,
L.
,
Haiyan
,
Y.
, and
Jie
,
L.
,
2020
, “
Progress in the Functional Modification of Graphene/Graphene Oxide: A Review
,”
RSC Adv.
,
10
(
26
), pp.
15328
15345
.10.1039/D0RA01068E
117.
Jung
,
S.
,
Zafar
,
U.
,
Achary
,
L. S. K.
, and
Koo
,
C. M.
,
2023
, “
Ligand Chemistry for Surface Functionalization in MXenes: A Review
,”
EcoMat
,
5
(
10
), p.
e12395
.10.1002/eom2.12395
118.
Zou
,
D.
,
Huang
,
X.
,
Zhu
,
Y.
,
Chen
,
J.
, and
Jiang
,
P.
,
2019
, “
Boron Nitride Nanosheets Endow the Traditional Dielectric Polymer Composites With Advanced Thermal Management Capability
,”
Compos. Sci. Technol.
,
177
, pp.
88
95
.10.1016/j.compscitech.2019.04.027
119.
Hu
,
B.
,
Zhang
,
W.
,
Guo
,
H.
,
Xu
,
S.
,
Li
,
Y.
,
Li
,
M.
, and
Li
,
B.
,
2022
, “
Nacre-Mimetic Elastomer Composites With Synergistic Alignments of Boron Nitride/Graphene Oxide Towards High Through-Plane Thermal Conductivity
,”
Compos. Part A: Appl. Sci. Manuf.
,
156
, p.
106891
.10.1016/j.compositesa.2022.106891
120.
Han
,
W.
,
Chen
,
M.
,
Song
,
W.
,
Ge
,
C.
, and
Zhang
,
X.
,
2020
, “
Construction of Hexagonal Boron Nitride@Polystyrene Nanocomposite With High Thermal Conductivity for Thermal Management Application
,”
Ceram. Int.
,
46
(
6
), pp.
7595
7601
.10.1016/j.ceramint.2019.11.259
121.
Lee
,
J.
,
Jung
,
H.
,
Yu
,
S.
,
Man Cho
,
S.
,
Tiwari
,
V. K.
,
Babu Velusamy
,
D.
, and
Park
,
C.
,
2016
, “
Boron Nitride Nanosheets (BNNSs) Chemically Modified by “Grafting-From” Polymerization of Poly(Caprolactone) for Thermally Conductive Polymer Composites
,”
Chem. Asian J.
,
11
(
13
), pp.
1921
1928
.10.1002/asia.201600470
122.
Zhang
,
Y.
,
Wang
,
J.-W.
,
Ma
,
Y.-J.
,
Zhang
,
Z.-L.
, and
Tao
,
L.
,
2024
, “
Polyimide Composites With Fluorinated Graphene and Functionalized Boron Nitride Nanosheets for Heat Dissipation
,”
ACS Appl. Nano Mater.
,
7
(
5
), pp.
5009
5018
.10.1021/acsanm.3c05761
123.
Zeng
,
X.
,
Ye
,
L.
,
Yu
,
S.
,
Li
,
H.
,
Sun
,
R.
,
Xu
,
J.
, and
Wong
,
C.-P.
,
2015
, “
Artificial Nacre-Like Papers Based on Noncovalent Functionalized Boron Nitride Nanosheets With Excellent Mechanical and Thermally Conductive Properties
,”
Nanoscale
,
7
(
15
), pp.
6774
6781
.10.1039/C5NR00228A
124.
Zhao
,
K.
,
Wei
,
S.
,
Wang
,
M.
, and
Chen
,
Y.
,
2023
, “
Alkylated Modified Boron Nitride Nanosheets/Polyimide Composite Films With Advanced Thermal Conductivity and Low Dielectric Constant
,”
Ceram. Int.
,
49
(
20
), pp.
32577
32587
.10.1016/j.ceramint.2023.07.224
125.
Morishita
,
T.
, and
Okamoto
,
H.
,
2016
, “
Facile Exfoliation and Noncovalent Superacid Functionalization of Boron Nitride Nanosheets and Their Use for Highly Thermally Conductive and Electrically Insulating Polymer Nanocomposites
,”
ACS Appl. Mater. Interfaces
,
8
(
40
), pp.
27064
27073
.10.1021/acsami.6b08404
126.
Duan
,
G.
,
Wang
,
Y.
,
Yu
,
J.
,
Zhu
,
J.
, and
Hu
,
Z.
,
2019
, “
Novel Poly(m-Phenyleneisophthalamide) Dielectric Composites With Enhanced Thermal Conductivity and Breakdown Strength Utilizing Functionalized Boron Nitride Nanosheets
,”
Macromol. Mater. Eng.
,
304
(
11
), p.
1900310
.10.1002/mame.201900310
127.
Zhao
,
L.
,
Yan
,
L.
,
Wei
,
C.
,
Wang
,
Z.
,
Jia
,
L.
,
Ran
,
Q.
,
Huang
,
X.
, and
Ren
,
J.
,
2020
, “
Aqueous-Phase Exfoliation and Functionalization of Boron Nitride Nanosheets Using Tannic Acid for Thermal Management Applications
,”
Ind. Eng. Chem. Res.
,
59
(
37
), pp.
16273
16282
.10.1021/acs.iecr.0c02766
128.
An
,
L.
,
Gu
,
R.
,
Zhong
,
B.
,
Wang
,
J.
,
Zhang
,
J.
, and
Yu
,
Y.
,
2021
, “
Quasi-Isotropically Thermal Conductive, Highly Transparent, Insulating and Super-Flexible Polymer Films Achieved by Cross Linked 2D Hexagonal Boron Nitride Nanosheets
,”
Small
,
17
(
46
), p.
2101409
.10.1002/smll.202101409
129.
Wang
,
Y.
,
Wei
,
X.
,
Cai
,
H.
,
Zhang
,
B.
,
Chen
,
Y.
,
Li
,
M.
,
Qin
,
Y.
, et al.,
2022
, “
Enhanced Thermal Transportation Across an Electrostatic Self-Assembly of Black Phosphorene and Boron Nitride Nanosheets in Flexible Composite Films
,”
Nanoscale
,
14
(
27
), pp.
9743
9753
.10.1039/D2NR02421G
130.
Liu
,
B.
,
Zeng
,
J.
,
Li
,
P.
,
Li
,
J.
,
Wang
,
B.
,
Xu
,
J.
,
Gao
,
W.
, and
Chen
,
K.
,
2023
, “
Flexible Nanocellulose-Based Layered Films by Crosslinking Phosphorus Lignin Nanoparticles and Functionalized Boron Nitride Nanosheets for Flame-Resistant and Thermal Conductivity Applications
,”
J. Mater. Chem. A
,
11
(
44
), pp.
24057
24071
.10.1039/D3TA05636H
131.
Nie
,
M.-X.
,
Wang
,
J.
,
Zhang
,
Q.
,
Han
,
D.
, and
Fu
,
Q.
,
2024
, “
Achieving Low Dielectric Constant and High Thermal Conductivity Polymer Composites by Using Larger POSS Functionalized Boron Nitride Nanosheets
,”
J. Mater. Chem. A
,
12
(
36
), pp.
24214
24225
.10.1039/D4TA04966G
132.
Zhang
,
Y.
,
Wang
,
J.-W.
,
Ma
,
Y.-J.
, and
Zhang
,
Z.-L.
,
2024
, “
Multifunctional Boron Nitride Nanosheets/Fluorinated-Polyimide Composites With Ultra-Low Dielectric Constant and High Thermal Conductivity
,”
Polym. Compos.
,
45
(
8
), pp.
7661
7672
.10.1002/pc.28295
You do not currently have access to this content.