Abstract

Nondiffusive phonon transport presents significant challenges in micro/nanoscale thermal characterization, compounded by the limitations of experimental-numerical techniques and the presence of measurement noise. Additionally, inverse modeling and uncertainty quantification (UQ) for submicron thermal transport remain under-explored. In this study, we introduce a physics-informed Bayesian deep learning framework designed to address phonon Boltzmann transport equation (BTE)-based forward and inverse problems leveraging limited and noisy data. Our approach combines Bayesian neural networks with a nonparametric variational inference method, formulating the BTE-constrained training in a Bayesian manner. This enables the estimation of the posterior distribution of neural network parameters and unknown equation parameters based on a likelihood function that incorporates uncertainties from both the measurement data and the BTE model. Through numerical experiments on various phonon transport scenarios, we demonstrate that our method can accurately reconstruct temperature and heat flux profiles, infer critical quantities of interest (e.g., Knudsen number), and provide robust uncertainty quantification, even when data is sparse and noisy. This framework enhances our capability to conduct nondiffusive thermal simulations and inverse modeling with quantified uncertainty, offering a powerful tool for advancing thermal transport research and optimization in micro/nanoscale devices.

References

1.
Amano
,
H.
,
Baines
,
Y.
,
Beam
,
E.
,
Borga
,
M.
,
Bouchet
,
T.
,
Chalker
,
P. R.
,
Charles
,
M.
, et al.,
2018
, “
The 2018 GaN Power Electronics Roadmap
,”
J. Phys. D: Appl. Phys.
,
51
(
16
), p.
163001
.10.1088/1361-6463/aaaf9d
2.
Feng
,
T.
,
Zhou
,
H.
,
Cheng
,
Z.
,
Larkin
,
L. S.
, and
Neupane
,
M. R.
,
2023
, “
A Critical Review of Thermal Boundary Conductance Across Wide and Ultrawide Bandgap Semiconductor Interfaces
,”
ACS Appl. Mater. Interfaces
,
15
(
25
), pp.
29655
29673
.10.1021/acsami.3c02507
3.
Moore
,
A. L.
, and
Shi
,
L.
,
2014
, “
Emerging Challenges and Materials for Thermal Management of Electronics
,”
Mater. Today
,
17
(
4
), pp.
163
174
.10.1016/j.mattod.2014.04.003
4.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
, Oxford, UK.
5.
Broido
,
D. A.
,
Malorny
,
M.
,
Birner
,
G.
,
Mingo
,
N.
, and
Stewart
,
D. A.
,
2007
, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231922
.10.1063/1.2822891
6.
Wan
,
X.
,
Ma
,
D.
,
Pan
,
D.
,
Yang
,
L.
, and
Yang
,
N.
,
2021
, “
Optimizing Thermal Transport in Graphene Nanoribbon Based on Phonon Resonance Hybridization
,”
Mater. Today Phys.
,
20
, p.
100445
.10.1016/j.mtphys.2021.100445
7.
Wan
,
X.
,
Pan
,
D.
,
Zong
,
Z.
,
Qin
,
Y.
,
,
J.-T.
,
Volz
,
S.
,
Zhang
,
L.
, and
Yang
,
N.
,
2024
, “
Modulating Thermal Conductivity Via Targeted Phonon Excitation
,”
Nano Letters
,
24
(
23
), pp.
6889
6896
.10.1021/acs.nanolett.4c00478
8.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
115
(
1
), pp.
7
16
.10.1115/1.2910673
9.
Li
,
R.
,
Lee
,
E.
, and
Luo
,
T.
,
2020
, “
A Unified Deep Neural Network Potential Capable of Predicting Thermal Conductivity of Silicon in Different Phases
,”
Mater. Today Phys.
,
12
, p.
100181
.10.1016/j.mtphys.2020.100181
10.
Lacroix
,
D.
,
Joulain
,
K.
, and
Lemonnier
,
D.
,
2005
, “
Monte Carlo Transient Phonon Transport in Silicon and Germanium at Nanoscales
,”
Phys. Rev. B
,
72
(
6
), p.
064305
.10.1103/PhysRevB.72.064305
11.
Zhang
,
C.
,
Chen
,
S.
,
Guo
,
Z.
, and
Wu
,
L.
,
2021
, “
A Fast Synthetic Iterative Scheme for the Stationary Phonon Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
,
174
, p.
121308
.10.1016/j.ijheatmasstransfer.2021.121308
12.
Zhang
,
C.
, and
Guo
,
Z.
,
2019
, “
Discrete Unified Gas Kinetic Scheme for Multiscale Heat Transfer With Arbitrary Temperature Difference
,”
Int. J. Heat Mass Transfer
,
134
, pp.
1127
1136
.10.1016/j.ijheatmasstransfer.2019.02.056
13.
Brites
,
C. D.
,
Lima
,
P. P.
,
Silva
,
N. J.
,
Millán
,
A.
,
Amaral
,
V. S.
,
Palacio
,
F.
, and
Carlos
,
L. D.
,
2012
, “
Thermometry at the Nanoscale
,”
Nanoscale
,
4
(
16
), p.
4799
.10.1039/c2nr30663h
14.
Kuball
,
M.
,
Hayes
,
J. M.
,
Uren
,
M. J.
,
Martin
,
I.
,
Birbeck
,
J. C. H.
,
Balmer
,
R. S.
, and
Hughes
,
B. T.
,
2002
, “
Measurement of Temperature in Active High-Power AlGaN/GaN HFETs Using Raman Spectroscopy
,”
IEEE Electron Device Lett.
,
23
(
1
), pp.
7
9
.10.1109/55.974795
15.
Pavlidis
,
G.
,
Hilton
,
A. M.
,
Brown
,
J. L.
,
Heller
,
E. R.
, and
Graham
,
S.
,
2020
, “
Monitoring the Joule Heating Profile of GaN/SiC High Electron Mobility Transistors Via Cross-Sectional Thermal Imaging
,”
J. Appl. Phys.
,
128
(
7
), p.
075705
.10.1063/5.0014407
16.
Jiang
,
P.
,
Qian
,
X.
, and
Yang
,
R.
,
2018
, “
Tutorial: Time-Domain Thermoreflectance (TDTR) for Thermal Property Characterization of Bulk and Thin Film Materials
,”
J. Appl. Phys.
,
124
(
16
), p.
161103
.10.1063/1.5046944
17.
Helou
,
A. E.
,
Komarov
,
P.
,
Tadjer
,
M. J.
,
Anderson
,
T. J.
,
Francis
,
D. A.
,
Feygelson
,
T.
,
Pate
,
B. B.
,
Hobart
,
K. D.
, and
Raad
,
P. E.
,
2020
, “
High-Resolution Thermoreflectance Imaging Investigation of Self-Heating in AlGaN/GaN HEMTs on Si, SiC, and Diamond Substrates
,”
IEEE Trans. Electron Devices
,
67
(
12
), pp.
5415
5420
.10.1109/TED.2020.3028557
18.
Sandell
,
S.
,
Chávez-Ángel
,
E.
,
El Sachat
,
A.
,
He
,
J.
,
Sotomayor Torres
,
C. M.
, and
Maire
,
J.
,
2020
, “
Thermoreflectance Techniques and Raman Thermometry for Thermal Property Characterization of Nanostructures
,”
J. Appl. Phys.
,
128
(
13
), p.
131101
.10.1063/5.0020239
19.
Qian
,
X.
, and
Yang
,
R.
,
2021
, “
Machine Learning for Predicting Thermal Transport Properties of Solids
,”
Mater. Sci. Eng.: R: Rep.
,
146
, p.
100642
.10.1016/j.mser.2021.100642
20.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
21.
Cuomo
,
S.
,
Di Cola
,
V. S.
,
Giampaolo
,
F.
,
Rozza
,
G.
,
Raissi
,
M.
, and
Piccialli
,
F.
,
2022
, “
Scientific Machine Learning Through Physics–Informed Neural Networks: Where We Are and What's Next
,”
J. Sci. Comput.
,
92
(
3
), p.
88
.10.1007/s10915-022-01939-z
22.
Li
,
R.
,
Lee
,
E.
, and
Luo
,
T.
,
2021
, “
Physics-Informed Neural Networks for Solving Multiscale Mode-Resolved Phonon Boltzmann Transport Equation
,”
Mater. Today Phys.
,
19
, p.
100429
.10.1016/j.mtphys.2021.100429
23.
Li
,
R.
,
Wang
,
J.-X.
,
Lee
,
E.
, and
Luo
,
T.
,
2022
, “
Physics-Informed Deep Learning for Solving Phonon Boltzmann Transport Equation With Large Temperature Non-Equilibrium
,”
Npj Comput. Mater.
,
8
(
1
), p.
29
.10.1038/s41524-022-00712-y
24.
Zhou
,
J.
,
Li
,
R.
, and
Luo
,
T.
,
2023
, “
Physics-Informed Neural Networks for Solving Time-Dependent Mode-Resolved Phonon Boltzmann Transport Equation
,”
Npj Comput. Mater.
,
9
(
1
), p.
212
.10.1038/s41524-023-01165-7
25.
Li
,
R.
,
Lee
,
E.
, and
Luo
,
T.
,
2023
, “
Physics-Informed Deep Learning for Solving Coupled Electron and Phonon Boltzmann Transport Equations
,”
Phys. Rev. Appl.
,
19
(
6
), p.
064049
.10.1103/PhysRevApplied.19.064049
26.
Sun
,
L.
, and
Wang
,
J.-X.
,
2020
, “
Physics-Constrained Bayesian Neural Network for Fluid Flow Reconstruction With Sparse and Noisy Data
,”
Theor. Appl. Mech. Lett.
,
10
(
3
), pp.
161
169
.10.1016/j.taml.2020.01.031
27.
Yang
,
L.
,
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2021
, “
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems With Noisy Data
,”
J. Comput. Phys.
,
425
, p.
109913
.10.1016/j.jcp.2020.109913
28.
Liu
,
Q.
, and
Wang
,
D.
,
2016
, “
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
,” 30th International Conference on Neural Information Processing Systems (
NIPS
), Barcelona, Spain, Dec. 5–10, pp.
2378
2386
.https://dl.acm.org/doi/pdf/10.5555/3157096.3157362
29.
Minnich
,
A. J.
,
Chen
,
G.
,
Mansoor
,
S.
, and
Yilbas
,
B.
,
2011
, “
Quasiballistic Heat Transfer Studied Using the Frequency-Dependent Boltzmann Transport Equation
,”
Phys. Rev. B
,
84
(
23
), p.
235207
.10.1103/PhysRevB.84.235207
30.
Jin
,
S.
,
Ma
,
Z.
, and
Wu
,
K.
,
2023
, “
Asymptotic-Preserving Neural Networks for Multiscale Time-Dependent Linear Transport Equations
,”
J. Sci. Comput.
,
94
(
3
), p.
57
.10.1007/s10915-023-02100-0
31.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” preprint
arXiv
:1412.6980.10.48550/arXiv.1412.6980
32.
Blei
,
D. M.
,
Kucukelbir
,
A.
, and
McAuliffe
,
J. D.
,
2017
, “
Variational Inference: A Review for Statisticians
,”
J. Am. Stat. Assoc.
,
112
(
518
), pp.
859
877
.10.1080/01621459.2017.1285773
33.
Murthy
,
J. Y.
,
Narumanchi
,
S. V. J.
,
Pascual-Gutierrez
,
J. A.
,
Wang
,
T.
,
Ni
,
C.
, and
Mathur
,
S. R.
,
2005
, “
Review of Multiscale Simulation in Submicron Heat Transfer
,”
Int. J. Multiscale Comput. Eng.
,
3
(
1
), pp.
5
32
.10.1615/IntJMultCompEng.v3.i1.20
34.
Hamian
,
S.
,
Yamada
,
T.
,
Faghri
,
M.
, and
Park
,
K.
,
2015
, “
Finite Element Analysis of Transient Ballistic–Diffusive Phonon Heat Transport in Two-Dimensional Domains
,”
Int. J. Heat Mass Transfer
,
80
, pp.
781
788
.10.1016/j.ijheatmasstransfer.2014.09.073
35.
Ramachandran
,
P.
,
Zoph
,
B.
, and
Le
,
Q. V.
,
2017
, “
Searching for Activation Functions
,” preprint
arXiv
:1710.05941.10.48550/arXiv.1710.05941
36.
Sobol'
,
I. Y. M.
,
1967
, “
On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals
,”
Zh. Vychisl. Mat. Mat. Fiz.
,
7
(
4
), p.
784
.10.1016/0041-5553(67)90144-9
37.
Hale
,
N.
, and
Townsend
,
A.
,
2013
, “
Fast and Accurate Computation of Gauss–Legendre and Gauss–Jacobi Quadrature Nodes and Weights
,”
SIAM J. Sci. Comput.
,
35
(
2
), pp.
A652
A674
.10.1137/120889873
38.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
, et al.,
2019
, “
Pytorch: An Imperative Style, High-Performance Deep Learning Library
,”
33rd International Conference on Neural Information Processing Systems
, Vancouver, BC, Canada, Dec. 8–14, pp.
8026
8037
.https://dl.acm.org/doi/pdf/10.5555/3454287.3455008
39.
Guo
,
Z.
, and
Xu
,
K.
,
2016
, “
Discrete Unified Gas Kinetic Scheme for Multiscale Heat Transfer Based on the Phonon Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
,
102
, pp.
944
958
.10.1016/j.ijheatmasstransfer.2016.06.088
40.
Scott
,
E. A.
,
Perez
,
C.
,
Saltonstall
,
C.
,
Adams
,
D. P.
,
Carter Hodges
,
V.
,
Asheghi
,
M.
,
Goodson
,
K. E.
,
Hopkins
,
P. E.
,
Leonhardt
,
D.
, and
Ziade
,
E.
,
2021
, “
Simultaneous Thickness and Thermal Conductivity Measurements of Thinned Silicon From 100 nm to 17 μm
,”
Appl. Phys. Lett.
,
118
(
20
), p.
202108
.10.1063/5.0050888
41.
Hua
,
Y.-C.
, and
Cao
,
B.-Y.
,
2016
, “
Transient in-Plane Thermal Transport in Nanofilms With Internal Heating
,”
Proc. R. Soc. A
,
472
(
2186
), p.
20150811
.10.1098/rspa.2015.0811
42.
Collins
,
K. C.
,
Maznev
,
A. A.
,
Tian
,
Z.
,
Esfarjani
,
K.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2013
, “
Non-Diffusive Relaxation of a Transient Thermal Grating Analyzed With the Boltzmann Transport Equation
,”
J. Appl. Phys.
,
114
(
10
), p.
104302
.10.1063/1.4820572
43.
Cai
,
S.
,
Wang
,
Z.
,
Wang
,
S.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Heat Transfer Problems
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
6
), p.
060801
.10.1115/1.4050542
44.
He
,
Z.
,
Ni
,
F.
,
Wang
,
W.
, and
Zhang
,
J.
,
2021
, “
A Physics-Informed Deep Learning Method for Solving Direct and Inverse Heat Conduction Problems of Materials
,”
Mater. Today Commun.
,
28
, p.
102719
.10.1016/j.mtcomm.2021.102719
You do not currently have access to this content.