Graphical Abstract Figure

Bubble dynamics in liquid film boiling is greatly different from that in pool boiling, due to the diverse liquid temperature distribution and confined bubble departure in the thin liquid film. A theoretical model is established including bubble nucleation, growth and departure in liquid film boiling, which is used to further predict the liquid film boiling heat flux and reveal the mechanism of heat transfer enhancement.

Graphical Abstract Figure

Bubble dynamics in liquid film boiling is greatly different from that in pool boiling, due to the diverse liquid temperature distribution and confined bubble departure in the thin liquid film. A theoretical model is established including bubble nucleation, growth and departure in liquid film boiling, which is used to further predict the liquid film boiling heat flux and reveal the mechanism of heat transfer enhancement.

Close modal

Abstract

Liquid film boiling, where bubbles are generated together with evaporation in several hundred micrometers thick liquid film, has attracted great interest recently due to its potential in dissipating high heat flux with low superheat. However, the existing models on bubble dynamics based on pool boiling are not suitable for predicting the bubble behaviors in liquid film boiling. Here, we develop a theoretical model to study bubble dynamics (including nucleation, growth, and departure) in liquid film boiling on the horizontal surface. By considering the evaporation atop the liquid film surface, we solve the transient heat conduction in the liquid film, and then derive the waiting period for bubble nucleation. The bubble growth rate is computed by taking into account evaporation from both superheated liquid layer and microlayer. Bubble departure diameter is obtained by considering the surface tension force atop the liquid film and reconstructing the pendant bubble shape based on the Young-Laplace equation. It is shown that when liquid film thickness reduces, the bubble waiting period increases, while the bubble growth period and growth rate decrease. By predicting the heat transfer based on bubble dynamics, we find that the enhanced heat transfer in liquid film boiling, compared to pool boiling, mainly benefits from the significantly increased bubble departure frequency due to reduced departure diameter.

References

1.
Cho
,
H. J.
,
Preston
,
D. J.
,
Zhu
,
Y.
, and
Wang
,
E. N.
,
2016
, “
Nanoengineered Materials for Liquid–Vapour Phase-Change Heat Transfer
,”
Nat. Rev. Mater.
,
2
(
2
), p.
16092
.10.1038/natrevmats.2016.92
2.
Wen
,
R.
,
Ma
,
X.
,
Lee
,
Y.-C.
, and
Yang
,
R. G.
,
2018
, “
Liquid-Vapor Phase-Change Heat Transfer on Functionalized Nanowired Surfaces and Beyond
,”
Joule
,
2
(
11
), pp.
2307
2347
.10.1016/j.joule.2018.08.014
3.
Wen
,
R.
,
Xu
,
S.
,
Lee
,
Y.-C.
, and
Yang
,
R. G.
,
2018
, “
Capillary-Driven Liquid Film Boiling Heat Transfer on Hybrid Mesh Wicking Structures
,”
Nano Energy
,
51
, pp.
373
382
.10.1016/j.nanoen.2018.06.063
4.
Sudhakar
,
S.
,
Weibel
,
J. A.
,
Zhou
,
F.
,
Dede
,
E. M.
, and
Garimella
,
S. V.
,
2019
, “
Area-Scalable High-Heat-Flux Dissipation at Low Thermal Resistance Using a Capillary-Fed Two-Layer Evaporator Wick
,”
Int. J. Heat Mass Transfer
,
135
, pp.
1346
1356
.10.1016/j.ijheatmasstransfer.2019.02.075
5.
Zhang
,
C.
,
Palko
,
J. W.
,
Barako
,
M. T.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2021
, “
Design and Optimization of Well-Ordered Microporous Copper Structure for High Heat Flux Cooling Applications
,”
Int. J. Heat Mass Transfer
,
173
, p.
121241
.10.1016/j.ijheatmasstransfer.2021.121241
6.
Li
,
X.
,
Wang
,
S.
,
Wen
,
R.
,
Ma
,
X.
, and
Yang
,
R. G.
,
2022
, “
Liquid Film Boiling Enabled Ultra-High Conductance and High Flux Heat Spreaders
,”
Cell Rep. Phys. Sci.
,
3
(
3
), p.
100746
.10.1016/j.xcrp.2022.100746
7.
Wen
,
R.
,
Liu
,
W.
,
Ma
,
X.
, and
Yang
,
R. G.
,
2021
, “
Coupling Droplets/Bubbles With a Liquid Film for Enhancing Phase-Change Heat Transfer
,”
iScience
,
24
(
6
), p.
102531
.10.1016/j.isci.2021.102531
8.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids
,”
Trans. Am. Soc. Mech. Eng.
,
74
(
6
), pp.
969
975
.10.1115/1.4015984
9.
Chi-Yeh
,
H.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling—Part I: Bubble Initiaton, Growth and Departure
,”
Int. J. Heat Mass Transfer
,
8
(
6
), pp.
887
904
.10.1016/0017-9310(65)90073-6
10.
Cho
,
H. J.
, and
Wang
,
E. N.
,
2019
, “
Bubble Nucleation, Growth, and Departure: A New, Dynamic Understanding
,”
Int. J. Heat Mass Transfer
,
145
, p.
118803
.10.1016/j.ijheatmasstransfer.2019.118803
11.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,” ASME
J. Heat Mass Transfer-Trans. ASME
,
84
(
3
), pp.
207
213
.10.1115/1.3684339
12.
Carey
,
V. P.
,
2020
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
Taylor & Francis Group
,
New York, NY
.
13.
Liu
,
X.
,
Zou
,
Q.
, and
Yang
,
R. G.
,
2022
, “
Theoretical Analysis of Bubble Nucleation in Liquid Film Boiling
,”
Int. J. Heat Mass Transfer
,
192
, p.
122911
.10.1016/j.ijheatmasstransfer.2022.122911
14.
Li
,
P.
,
Liu
,
X.
,
Zou
,
Q.
,
Zhang
,
X.
, and
Yang
,
R. G.
,
2023
, “
Heat Transfer Incipience of Capillary-Driven Liquid Film Boiling
,”
Mater. Today Phys.
,
38
, p.
101230
.10.1016/j.mtphys.2023.101230
15.
Wang
,
Q.
, and
Chen
,
R.
,
2018
, “
Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes
,”
Nano Lett.
,
18
(
5
), pp.
3096
3103
.10.1021/acs.nanolett.8b00648
16.
Chen
,
L.
,
Jin
,
F.
,
Li
,
J.
,
Lv
,
Y.
,
Wang
,
Q.
,
Zheng
,
D.
,
Xian
,
H.
, and
Lin
,
J.
,
2021
, “
Hybrid Model of Thin Film Boiling: Insights Into the Unique Behavior and Ultrahigh Heat Flux
,”
Int. J. Heat Mass Transfer
,
179
, p.
121702
.10.1016/j.ijheatmasstransfer.2021.121702
17.
Kim
,
J.
,
2009
, “
Review of Nucleate Pool Boiling Bubble Heat Transfer Mechanisms
,”
Int. J. Multiphase Flow
,
35
(
12
), pp.
1067
1076
.10.1016/j.ijmultiphaseflow.2009.07.008
18.
Kandlikar
,
S. G.
,
2017
, “
Enhanced Macroconvection Mechanism With Separate Liquid–Vapor Pathways to Improve Pool Boiling Performance
,” ASME
J. Heat Mass Transfer-Trans. ASME
,
139
(
5
), p.
051501
.10.1115/1.4035247
19.
Utaka
,
Y.
,
Hu
,
K.
,
Chen
,
Z.
, and
Morokuma
,
T.
,
2018
, “
Measurement of Contribution of Microlayer Evaporation Applying the Microlayer Volume Change During Nucleate Pool Boiling for Water and Ethanol
,”
Int. J. Heat Mass Transfer
,
125
, pp.
243
247
.10.1016/j.ijheatmasstransfer.2018.04.044
20.
Fritz
,
W.
,
1935
, “
Maximum Volume of Vapor Bubbles
,”
Phys. Zeitschr.
,
36
, pp.
379
54
.
21.
Zeng
,
L. Z.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
1993
, “
A Unified Model for the Prediction of Bubble Detachment Diameters in Boiling Systems—I. Pool Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2261
2270
.10.1016/S0017-9310(05)80111-5
22.
Kim
,
J.
, and
Kim
,
M. H.
,
2006
, “
On the Departure Behaviors of Bubble at Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
32
(
10–11
), pp.
1269
1286
.10.1016/j.ijmultiphaseflow.2006.06.010
23.
Teixeira
,
M. A. C.
,
Arscott
,
S.
,
Cox
,
S. J.
, and
Teixeira
,
P. I. C.
,
2015
, “
What Is the Shape of an Air Bubble on a Liquid Surface?
,”
Langmuir
,
31
(
51
), pp.
13708
13717
.10.1021/acs.langmuir.5b03970
24.
Walls
,
P. L.
,
Henaux
,
L.
, and
Bird
,
J. C.
,
2015
, “
Jet Drops From Bursting Bubbles: How Gravity and Viscosity Couple to Inhibit Droplet Production
,”
Phys. Rev. E
,
92
(
2
), p.
021002
.10.1103/PhysRevE.92.021002
25.
Zhou
,
Y.
,
Ji
,
B.
,
Zhao
,
C.
, and
Bo
,
H.
,
2021
, “
Bubble Formation From a Submerged Orifice in a Thin Liquid Layer: Detachment and Bursting
,”
Phys. Fluids
,
33
(
1
), p.
013305
.10.1063/5.0036330
26.
Ćoso
,
D.
,
Srinivasan
,
V.
,
Lu
,
M.-C.
,
Chang
,
J.-Y.
, and
Majumdar
,
A.
,
2012
, “
Enhanced Heat Transfer in Biporous Wicks in the Thin Liquid Film Evaporation and Boiling Regimes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
10
), p.
101501
.10.1115/1.4006106
27.
Mikic
,
B. B.
,
1969
, “
Bubble Growth Rates in Non-Uniform Temperature Field
,”
Prog. Heat Mass Transfer
,
2
, pp.
283
93
.
28.
Utaka
,
Y.
,
Kashiwabara
,
Y.
,
Ozaki
,
M.
, and
Chen
,
Z.
,
2014
, “
Heat Transfer Characteristics Based on Microlayer Structure in Nucleate Pool Boiling for Water and Ethanol
,”
Int. J. Heat Mass Transfer
,
68
, pp.
479
488
.10.1016/j.ijheatmasstransfer.2013.09.063
29.
Plesset
,
M. S.
, and
Zwick
,
S. A.
,
1954
, “
The Growth of Vapor Bubbles in Superheated Liquids
,”
J. Appl. Phys.
,
25
(
4
), pp.
493
500
.10.1063/1.1721668
30.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,” ASME
J. Heat Transfer-Trans. ASME
,
121
(
3
), pp.
623
631
.10.1115/1.2826025
31.
Qiu
,
D. M.
,
Dhir
,
V. K.
,
Chao
,
D.
,
Hasan
,
M. M.
,
Neumann
,
E.
,
Yee
,
G.
, and
Birchenough
,
A.
,
2002
, “
Single-Bubble Dynamics During Pool Boiling Under Low Gravity Conditions
,”
J. Thermophys. Heat Transfer
,
16
(
3
), pp.
336
345
.10.2514/2.6710
32.
Nam
,
Y.
,
Aktinol
,
E.
,
Dhir
,
V. K.
, and
Ju
,
Y. S.
,
2011
, “
Single Bubble Dynamics on a Superhydrophilic Surface With Artificial Nucleation Sites
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1572
1577
.10.1016/j.ijheatmasstransfer.2010.11.031
33.
Cooper
,
M. G.
, and
Lloyd
,
A. J. P.
,
1969
, “
The Microlayer in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
895
913
.10.1016/0017-9310(69)90154-9
34.
Smirnov
,
G. F.
,
1975
, “
Calculation of the “Initial” Thickness of the “Microlayer” During Bubble Boiling
,”
J. Eng. Phys.
,
28
(
3
), pp.
369
374
.10.1007/BF00862021
35.
Jung
,
S.
, and
Kim
,
H.
,
2018
, “
Hydrodynamic Formation of a Microlayer Underneath a Boiling Bubble
,”
Int. J. Heat Mass Transfer
,
120
, pp.
1229
1240
.10.1016/j.ijheatmasstransfer.2017.12.098
36.
Bureš
,
L.
, and
Sato
,
Y.
,
2022
, “
Comprehensive Simulations of Boiling With a Resolved Microlayer: Validation and Sensitivity Study
,”
J. Fluid Mech.
,
933
, p.
a54
.10.1017/jfm.2021.1108
37.
Gao
,
M.
,
Dong
,
W.-H.
,
Shen
,
Z.-X.
, and
Zhang
,
L.-X.
,
2023
, “
Theoretical Model of Microlayer and Macrolayer Evaporation Considering Heating Surface Temperature Radial Distribution at the Bottom of the Bubble
,”
Int. Commun. Heat Mass Transfer
,
140
, p.
106515
.10.1016/j.icheatmasstransfer.2022.106515
38.
Li
,
M.
,
Hu
,
L.
,
Xu
,
H.
,
Chen
,
W.
,
Xie
,
H.
, and
Fu
,
X.
,
2019
, “
Jet Formation During the Gas Penetration Through a Thin Liquid Layer
,”
Phys. Fluids
,
31
(
1
), p.
017105
.10.1063/1.5066593
39.
Li
,
M.
,
Hu
,
L.
,
Chen
,
W.
,
Xie
,
H.
, and
Fu
,
X.
,
2019
, “
Submerged Injection of Gas Into a Thin Liquid Sheet
,”
Int. J. Multiphase Flow
,
110
, pp.
118
131
.10.1016/j.ijmultiphaseflow.2018.09.009
40.
Zhang
,
L.
,
Gong
,
S.
,
Lu
,
Z.
,
Cheng
,
P.
, and
Wang
,
E. N.
,
2022
, “
Boiling Crisis Due to Bubble Interactions
,”
Int. J. Heat Mass Transfer
,
182
, p.
121904
.10.1016/j.ijheatmasstransfer.2021.121904
41.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,” ASME
J. Heat Transfer-Trans. ASME
,
115
(
3
), pp.
659
669
.10.1115/1.2910737
42.
Kim
,
J.
,
Jun
,
S.
,
Laksnarain
,
R.
, and
You
,
S. M.
,
2016
, “
Effect of Surface Roughness on Pool Boiling Heat Transfer at a Heated Surface Having Moderate Wettability
,”
Int. J. Heat Mass Transfer
,
101
, pp.
992
1002
.10.1016/j.ijheatmasstransfer.2016.05.067
You do not currently have access to this content.