Abstract

Omnidirectional mobile robots are widely used in studies and services as they are effective and efficient in moving in any direction regardless of their current orientation. These significant properties are very useful in energy-efficient navigation and obstacle avoidance in dynamic environments. The literature on modeling and control of omni-wheel robots usually relies on the kinematic model or simplified kinematic model. Then developing control laws based on these reduced-effect models. In this article, we developed an efficient full dynamic model of a nonholonomic omni-wheel robot, including roller dynamics. That allows for a proportional–integral–derivative control law to accurately follow arbitrary paths. Kane’s approach was used for the dynamic model derivation. Kinematic modeling is less complex than multibody dynamic modeling. But to have an accurate simulation of the realistic motions of a mechanical system, the multibody dynamic model is required.

References

1.
Watanabe
,
K.
,
Shiraishi
,
Y.
,
Tzafestas
,
S. G.
,
Tang
,
J.
, and
Fukuda
,
T.
,
1998
, “
Feedback Control of an Omnidirectional Autonomous Platform for Mobile Service Robots
,”
J. Intell. Rob. Syst.
,
22
(
3/4
), pp.
315
330
.
2.
Shabalina
,
K.
,
Sagitov
,
A.
, and
Magid
,
E.
,
2018
, “
Comparative Analysis of Mobile Robot Wheels Design
,”
2018 11th International Conference on Developments in eSystems Engineering (DeSE)
,
Cambridge, UK
,
Sept. 2–5
, pp.
181
193
.
3.
Arczewski
,
K.
, and
Blajer
,
W.
,
1996
, “
A Unified Approach to the Modelling of Holonomic and Nonholonomic Mechanical Systems
,”
Math. Modell. Syst.
,
2
(
3
), pp.
157
174
.
4.
Wang
,
C.
,
Liu
,
X.
,
Yang
,
X.
,
Hu
,
F.
,
Jiang
,
A.
, and
Yang
,
C.
,
2018
, “
Trajectory Tracking of an Omni-Directional Wheeled Mobile Robot Using a Model Predictive Control Strategy
,”
Appl. Sci.
,
8
(
2
), pp.
219
233
.
5.
Rijalusalam
,
D. U.
, and
Iswanto
,
I.
,
2021
, “
Implementation Kinematics Modeling and Odometry of Four Omni Wheel Mobile Robot on the Trajectory Planning and Motion Control-Based Microcontroller
,”
J. Rob. Control (JRC)
,
2
(
5
), pp.
448
455
.
6.
Zhao
,
D.
,
Yi
,
J.
, and
Deng
,
X.
,
2003
, “
Structure and Kinematic Analysis of Omnidirectional Mobile Robots
,”
Robot
,
25
(
5
), pp.
394
398
.
7.
Li
,
X.
, and
Zell
,
A.
,
2007
, “
Motion Control of an Omnidirectional Mobile Robot
,”
Proceedings of 4th International Conference on Informatics in Control, Automation and Robotics
,
Angers, France
,
May 9–12
.
8.
Samani
,
A. H.
,
Abdollahi
,
A.
,
Ostadi
,
H.
, and
Rad
,
S. Z.
,
2004
, “
Design and Development of a Comprehensive Omni Directional Soccer Player Robot
,”
Int. J. Adv. Robot. Syst.
,
1
(
3
), pp.
191
200
.
9.
Kim
,
C.
,
Suh
,
J.
, and
Han
,
J. H.
,
2020
, “
Development of a Hybrid Path Planning Algorithm and a Bio-inspired Control for an Omni-Wheel Mobile Robot
,”
Sensors
,
20
(
15
), p.
4258
.
10.
Dosoftei
,
C.
,
Horga
,
V.
,
Doroftei
,
I.
,
Popovici
,
T.
, and
Custura
,
Ş.
,
2020
, “
Simplified Mecanum Wheel Modelling Using a Reduced Omni Wheel Model for Dynamic Simulation of an Omnidirectional Mobile Robot
,”
2020 International Conference and Exposition on Electrical And Power Engineering (EPE)
,
Iasi, Romania
,
Feb. 18
.
11.
Rojas
,
R.
, and
Gloye Forster
,
A.
,
2006
, “
Holonomic Control of a Robot With an Omnidirecitonal Drive
,”
KI-Kunstliche Intell.
,
20
(
2
), pp.
12
17
.
12.
Liu
,
Y.
,
Zhu
,
J. J.
,
Williams II
,
R. L.
, and
Wu
,
J.
,
2008
, “
Omni-directional Mobile Robot Controller Based on Trajectory Linearization
,”
Robot. Auton. Syst.
,
56
(
5
), pp.
461
479
.
13.
Liu
,
Y.
,
Wu
,
X.
,
Zhu
,
J. J.
, and
Lew
,
J.
,
2003
, “
Omni-Directional Mobile Robot Controller Design by Trajectory Linearization
,”
Proceedings of the 2003 American Control Conference, 2003
, Vol.
4
, pp.
3423
3428
.
14.
Song
,
J.-B.
, and
Byun
,
K.-S.
,
2004
, “
Design and Control of a Four-Wheeled Omnidirectional Mobile Robot With Steerable Omnidirectional Wheels
,”
J. Robot. Syst.
,
21
(
4
), pp.
193
208
.
15.
Hashemi
,
E.
,
Jadidi
,
M. G.
, and
Babarsad
,
O. B.
,
2009
, “
Trajectory Planning Optimization With Dynamic Modeling of Four Wheeled Omni-Directional Mobile Robots
,”
2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation – (CIRA)
,
Daejeon, South Korea
,
Mar. 10
.
16.
Phunopas
,
A.
, and
Inoue
,
S.
,
2018
, “
Motion Improvement of Four-Wheeled Omnidirectional Mobile Robots for Indoor Terrain
,”
J. Robot. Network. Artif. Life
,
4
(
4
), pp.
275
282
.
17.
Azizi
,
M. R.
,
Rastegarpanah
,
A.
, and
Stolkin
,
R.
,
2021
, “
Motion Planning and Control of an Omnidirectional Mobile Robot in Dynamic Environments
,”
Robotics
,
10
(
1
), p.
48
.
18.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1983
, “
The Use of Kane’s Dynamical Equations in Robotics
,”
Int. J. Rob. Res.
,
2
(
3
), pp.
3
21
.
19.
Wolfram Research, Inc.
,
2021
, “
Mathematica, Version 12.3.1.0
,”
Wolfram Research, Inc.
,
Champaign, IL
.
20.
Barhorst
,
A. A.
,
1997
, “
Symbolic Equation Processing Utilizing Vector/Dyad Notation
,”
J. Sound Vib.
,
208
(
5
), pp.
823
839
.
21.
Bi
,
Z. M.
, and
Wang
,
L.
,
2010
, “
Dynamic Control Model of a Cobot With Three Omni-Wheels
,”
Rob. Comput.-Integr. Manuf.
,
26
(
6
), pp.
558
563
.
22.
Muir
,
P. F.
, and
Neuman
,
C. P.
,
1987
, “
Kinematic Modeling of Wheeled Mobile Robots
,”
J. Robot. Syst.
,
4
(
2
), pp.
281
340
.
23.
Kane
,
T. R.
,
Likins
,
P. W.
, and
Levinson
,
D. A.
,
1983
,
Spacecraft Dynamics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.