Abstract

The orbital stabilization problem for underactuated systems with a single passive degree-of-freedom is revisited. The impulse controlled Poincaré map (ICPM) approach, in which stabilizing impulsive inputs are applied on a Poincaré section, has distinct advantages over existing methods but feedback compensation once every oscillation limits the rate of convergence to the desired orbit. To overcome these limitations, we propose stabilization through application of multiple impulsive inputs during each oscillation. An optimal control problem is formulated to minimize a quadratic cost functional and the optimal inputs are obtained by solving a discrete periodic Riccati equation. Simulation results for a Pendubot are presented, highlighting the advantages of the control design over the ICPM method in terms of convergence rate and robustness to parameter uncertainty.

References

1.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
, and
Koditschek
,
D. E.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Automat. Contr.
,
48
(
1
), pp.
42
56
.
2.
Grizzle
,
J. W.
,
Abba
,
G.
, and
Plestan
,
F.
,
2001
, “
Asymptotically Stable Walking for Biped Robots: Analysis Via Systems With Impulse Effects
,”
IEEE Trans. Automat. Contr.
,
46
(
1
), pp.
51
64
.
3.
Kant
,
N.
, and
Mukherjee
,
R.
,
2020
, “
Orbital Stabilization of Underactuated Systems Using Virtual Holonomic Constraints and Impulse Controlled Poincaré Maps
,”
Syst. Control Lett.
,
146
, p.
104813
.
4.
Shiriaev
,
A.
,
Perram
,
J. W.
, and
Canudas-de Wit
,
C.
,
2005
, “
Constructive Tool for Orbital Stabilization of Underactuated Nonlinear Systems: Virtual Constraints Approach
,”
IEEE Trans. Automat. Contr.
,
50
(
8
), pp.
1164
1176
.
5.
Maggiore
,
M.
, and
Consolini
,
L.
,
2012
, “
Virtual Holonomic Constraints for Euler-Lagrange Systems
,”
IEEE Trans. Automat. Contr.
,
58
(
4
), pp.
1001
1008
.
6.
Mohammadi
,
A.
,
2016
,
Virtual-Holonomic Constraints for Euler-Lagrange Control Systems
,
University of Toronto
,
Toronto, Canada
.
7.
Freidovich
,
L.
,
Robertsson
,
A.
,
Shiriaev
,
A.
, and
Johansson
,
R.
,
2008
, “
Periodic Motions of the Pendubot Via Virtual Holonomic Constraints: Theory and Experiments
,”
Automatica
,
44
(
3
), pp.
785
791
.
8.
Mohammadi
,
A.
,
Rezapour
,
E.
,
Maggiore
,
M.
, and
Pettersen
,
K. Y.
,
2015
, “
Maneuvering Control of Planar Snake Robots Using Virtual Holonomic Constraints
,”
IEEE Trans. Control Syst. Technol.
,
24
(
3
), pp.
884
899
.
9.
Consolini
,
L.
, and
Maggiore
,
M.
,
2013
, “
Control of a Bicycle Using Virtual Holonomic Constraints
,”
Automatica
,
49
(
9
), pp.
2831
2839
.
10.
Westerberg
,
S.
,
Mettin
,
U.
,
Shiriaev
,
A. S.
,
Freidovich
,
L. B.
, and
Orlov
,
Y.
,
2009
, “
Motion Planning and Control of a Simplified Helicopter Model Based on Virtual Holonomic Constraints
,”
2009 International Conference on Advanced Robotics
,
Munich, Germany
,
June 22–26
, IEEE, pp.
1
6
.
11.
Gregg
,
R. D.
, and
Sensinger
,
J. W.
,
2013
, “
Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
246
254
.
12.
Bittanti
,
S.
,
Colaneri
,
P.
, and
Guardabassi
,
G.
,
1984
, “
Periodic Solutions of Periodic Riccati Equations
,”
IEEE Trans. Automat. Contr.
,
29
(
7
), pp.
665
667
.
13.
De Nicolao
,
G.
,
1994
, “
Cyclomonotonicity, Riccati Equations and Periodic Receding Horizon Control
,”
Automatica
,
30
(
9
), pp.
1375
1388
.
14.
Lovera
,
M.
, and
Astolfi
,
A.
,
2004
, “
Spacecraft Attitude Control Using Magnetic Actuators
,”
Automatica
,
40
(
8
), pp.
1405
1414
.
15.
Arcara
,
P.
,
Bittanti
,
S.
, and
Lovera
,
M.
,
2000
, “
Periodic Control of Helicopter Rotors for Attenuation of Vibrations in Forward Flight
,”
IEEE Trans. Control Syst. Technol.
,
8
(
6
), pp.
883
894
.
16.
Kant
,
N.
, and
Mukherjee
,
R.
,
2021
, “
Juggling a Devil-Stick: Hybrid Orbit Stabilization Using the Impulse Controlled Poincaré Map
,”
IEEE Control Syst. Lett.
,
6
, pp.
1304
1309
.
17.
Khandelwal
,
A.
,
Kant
,
N.
, and
Mukherjee
,
R.
,
2023
, “
Design of Impact-Free Gaits for Planar Bipeds and Their Stabilization Using Impulsive Control
,”
IEEE Rob. Autom. Lett.
,
8
(
11
), pp.
7242
7248
.
18.
Kant
,
N.
, and
Mukherjee
,
R.
,
2024
, “
Generating Stable Periodic Motion in Underactuated Systems in the Presence of Parameter Uncertainty: Theory and Experiments
,”
Mechatronics
,
102
, p.
103208
.
19.
Hench
,
J. J.
, and
Laub
,
A. J.
,
1994
, “
Numerical Solution of the Discrete-Time Periodic Riccati Equation
,”
IEEE Trans. Automat. Contr.
,
39
(
6
), pp.
1197
1210
.
20.
Yang
,
Y.
,
2017
, “
An Efficient Algorithm for Periodic Riccati Equation With Periodically Time-Varying Input Matrix
,”
Automatica
,
78
, pp.
103
109
.
21.
Yang
,
Y.
,
2018
, “
An Efficient LQR Design for Discrete-Time Linear Periodic System Based on a Novel Lifting Method
,”
Automatica
,
87
, pp.
383
388
.
22.
Larin
,
V.
,
2007
, “
High-Accuracy Algorithms for Solving the Discrete-Time Periodic Riccati Equation
,”
Int. Appl. Mech.
,
43
, pp.
1028
1034
.
23.
Varga
,
A.
,
2008
, “
On Solving Periodic Riccati Equations
,”
Numer. Linear Algeb. Appl.
,
15
(
9
), pp.
809
835
.
24.
Zhu
,
G.
,
1992
,
L-2 and L-Infinity Multiobjective Control for Linear Systems
,
Purdue University
,
West Lafayette, IN
.
25.
Kant
,
N.
,
Mukherjee
,
R.
,
Chowdhury
,
D.
, and
Khalil
,
H. K.
,
2019
, “
Estimation of the Region of Attraction of Underactuated Systems and Its Enlargement Using Impulsive Inputs
,”
IEEE Trans. Rob.
,
35
(
3
), pp.
618
632
.
26.
Jafari
,
R.
,
Mathis
,
F. B.
,
Mukherjee
,
R.
, and
Khalil
,
H.
,
2016
, “
Enlarging the Region of Attraction of Equilibria of Underactuated Systems Using Impulsive Inputs
,”
IEEE Trans. Control Syst. Technol.
,
24
(
1
), pp.
334
340
.
27.
Naidu
,
D. S.
,
2002
,
Optimal Control Systems
,
CRC Press
.
28.
Kant
,
N.
,
Mukherjee
,
R.
, and
Khalil
,
H.
,
2021
, “
Stabilization of Energy Level Sets of Underactuated Mechanical Systems Exploiting Impulsive Braking
,”
Nonlinear Dyn.
,
106
, pp.
279
293
.
You do not currently have access to this content.