Abstract

Control co-design (CCD) has been demonstrated to achieve superior solutions for closed-loop systems. However, limited work has addressed CCD problems under probabilistic disturbances. This article addresses this gap by formulating a finite-horizon optimal control problem with chance constraints and proposing a novel CCD approach. This approach integrates tube-based stochastic model predictive control with constraint-tightening techniques to optimize performance and robustness while preventing instability and infeasibility. A nested CCD framework is introduced, along with a constrained multi-objective optimization algorithm that enables the performance-robustness trade-off. A method for quantifying the robustness of closed-loop systems under stochastic disturbances is presented. The proposed CCD approach is demonstrated on a numerical example and an engineering case of the satellite attitude control system. Results show that CCD can generate more well-spread Pareto fronts that cannot be reached by other design strategies. This helps designers explore more potential solutions with different dynamic characteristics. Selected nondominated solution trajectories are visualized for qualitative comparisons. Future work will extend this to nonlinear applications.

References

1.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsov
,
A.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
Proceedings of the 2001 American Control Conference
,
Arlington, VA
,
June 25–27
, vol. 3, pp.
1864
1869
.
2.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.
3.
Garcia-Sanz
,
M.
,
2019
, “
Control Co-Design: An Engineering Game Changer
,”
Adv. Control Appl.: Eng. Ind. Syst.
,
1
(
1
), p.
e18
.
4.
Nash
,
A. L.
, and
Jain
,
N.
,
2019
, “
Combined Plant and Control Co-Design for Robust Disturbance Rejection in Thermal-Fluid Systems
,”
IEEE Trans. Control Syst. Technol.
,
28
(
6
), pp.
2532
2539
.
5.
Wu
,
J.
, and
Zhou
,
L.
,
2022
, “
Control Co-Design of Actively Controlled Lightweight Structures for High-Acceleration Precision Motion Systems
,”
Proceedings of the 2022 American Control Conference
,
Atlanta, GA
,
June 8–10
, pp.
5320
5327
.
6.
Pao
,
L. Y.
,
Zalkind
,
D. S.
,
Griffith
,
D. T.
,
Chetan
,
M.
,
Selig
,
M. S.
,
Ananda
,
G. K.
,
Bay
,
C. J.
,
Stehly
,
T.
, and
Loth
,
E.
,
2021
, “
Control Co-Design of 13 MW Downwind Two-Bladed Rotors to Achieve 25% Reduction in Levelized Cost of Wind Energy
,”
Annu. Rev. Control
,
51
, pp.
331
343
.
7.
Yang
,
L.
,
Huang
,
J.
,
Congpuong
,
N.
,
Chen
,
S.
,
Mi
,
J.
,
Bacelli
,
G.
, and
Zuo
,
L.
,
2021
, “
Control Co-Design and Characterization of a Power Takeoff for Wave Energy Conversion Based on Active Mechanical Motion Rectification
,”
IFAC-PapersOnLine
,
54
(
20
), pp.
198
203
.
8.
Sundarrajan
,
A. K.
,
Hoon Lee
,
Y.
,
Allison
,
J. T.
,
Zalkind
,
D. S.
, and
Herber
,
D. R.
,
2024
, “
Open-Loop Control Co-Design of Semisubmersible Floating Offshore Wind Turbines Using Linear Parameter-Varying Models
,”
ASME J. Mech. Des.
,
146
(
4
), p.
041704
.
9.
Ströfer
,
C. A. M.
,
Gaebele
,
D. T.
,
Coe
,
R. G.
, and
Bacelli
,
G.
,
2023
, “
Control Co-Design of Power Take-Off Systems for Wave Energy Converters Using WecOptTool
,”
IEEE Trans. Sustainable Energy
,
14
(
4
), pp.
2157
2167
.
10.
Amini
,
M. R.
,
Jiang
,
B.
,
Liao
,
Y.
,
Naik
,
K.
,
Martins
,
J. R.
, and
Sun
,
J.
,
2023
, “
Control Co-Design of a Hydrokinetic Turbine: A Comparative Study of Open-Loop Optimal Control and Feedback Control
,”
Proceedings of the 2023 American Control Conference
,
San Diego, CA
,
May 31–June 2
, pp.
3728
3734
.
11.
Pao
,
L. Y.
,
Pusch
,
M.
, and
Zalkind
,
D. S.
,
2023
, “
Control Co-Design of Wind Turbines
,”
Annu. Rev. Control Rob. Auton. Syst.
,
7
, pp.
201
226
.
12.
Abbas
,
N. J.
,
Jasa
,
J.
,
Zalkind
,
D. S.
,
Wright
,
A.
, and
Pao
,
L.
,
2024
, “
Control Co-Design of a Floating Offshore Wind Turbine
,”
Appl. Energy
,
353
, p.
122036
.
13.
Da Silva
,
J. G.
,
Nazaré
,
T.
,
Costa
,
M.
,
Lacerda
,
M. J.
, and
Nepomuceno
,
E.
,
2024
, “
Engineering and Technology Applications of Control Co-Design: A Survey
,”
IEEE Access
,
12
, pp.
81692
81717
.
14.
van Diepen
,
M.
, and
Shea
,
K.
,
2022
, “
Co-Design of the Morphology and Actuation of Soft Robots for Locomotion
,”
ASME J. Mech. Des.
,
144
(
8
), p.
083305
.
15.
Tsai
,
Y.-K.
, and
Malak
,
R. J.
,
2022
, “
A Constraint-Handling Technique for Parametric Optimization and Control Co-Design
,”
Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3A: 48th Design Automation Conference (DAC)
, p.
V03AT03A009
.
16.
Azad
,
S.
, and
Herber
,
D. R.
,
2023
, “
An Overview of Uncertain Control Co-Design Formulations
,”
ASME J. Mech. Des.
,
145
(
9
), p.
091701
.
17.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2020
, “
A Comparative Study of Formulations and Algorithms for Reliability-Based Co-Design Problems
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031104
.
18.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2020
, “
Reliability-Based Co-Design of State-Constrained Stochastic Dynamical Systems
,” Proceedings of AIAA Scitech 2020 Forum.
19.
Cui
,
T.
,
Zheng
,
Z.
, and
Wang
,
P.
,
2022
, “
Control Co-Design of Lithium-Ion Batteries for Enhanced Fast-Charging and Cycle Life Performances
,”
J. Electrochem. Energy Convers. Storage
,
19
(
3
), p.
031001
.
20.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
Robust MDSDO for Co-Design of Stochastic Dynamic Systems
,”
ASME J. Mech. Des.
,
142
(
1
), p.
011403
.
21.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2021
, “
A Single-Loop Reliability-Based MDSDO Formulation for Combined Design and Control Optimization of Stochastic Dynamic Systems
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021703
.
22.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2024
, “
A Comparative Study Between the Generalized Polynomial Chaos Expansion-and First-Order Reliability Method-Based Formulations of Simulation-Based Control Co-Design
,”
ASME J. Mech. Des.
,
146
(
8
), p.
081705
.
23.
Deshmukh
,
A. P.
,
Herber
,
D. R.
, and
Allison
,
J. T.
,
2015
, “
Bridging the Gap Between Open-Loop and Closed-Loop Control in Co-Design: A Framework for Complete Optimal Plant and Control Architecture Design
,”
Proceedings. of the 2015 American Control Conference
,
Chicago, IL
,
July 1–3
, pp.
4916
4922
.
24.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.
25.
Rawlings
,
J. B.
,
Mayne
,
D. Q.
, and
Diehl
,
M.
,
2017
,
Model Predictive Control: Theory, Computation, and Design
, Vol.
2
,
Nob Hill Publishing Madison
,
WI
.
26.
Docimo
,
D. J.
,
Kang
,
Z.
,
James
,
K. A.
, and
Alleyne
,
A. G.
,
2021
, “
Plant and Controller Optimization for Power and Energy Systems With Model Predictive Control
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
8
), p.
081009
.
27.
Nash
,
A.
,
2024
, “
Predictive Control Co-Design (pCCD): A Single-Level Optimization Framework for Computationally-Efficient Approximation of Recursive MPC in CCD
,”
ASME J. Dyn. Syst. Meas. Control
,
146
(
4
), p.
041002
.
28.
Tsai
,
Y.-K.
, and
Malak
,
R. J.
,
2023
, “
Control Co-Design With Approximate Explicit Model Predictive Controllers
,”
Proceedings of the ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3A: 49th Design Automation Conference (DAC)
, p.
V03AT03A001
.
29.
Bayat
,
S.
, and
Allison
,
J. T.
,
2023
, “
Control Co-Design With Varying Available Information Applied to Vehicle Suspensions
,”
Proceedings of the ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3A: 49th Design Automation Conference (DAC)
, p.
V03AT03A002
.
30.
Rudnick-Cohen
,
E. S.
,
Hodson
,
J. D.
,
Reich
,
G. W.
,
Pankonien
,
A. M.
, and
Beran
,
P. S.
,
2022
, “
Robust Optimal Design and Control of a Maneuvering Morphing Airfoil
,”
J. Aircr.
,
59
(
4
), pp.
861
874
.
31.
Nash
,
A. L.
,
Pangborn
,
H. C.
, and
Jain
,
N.
,
2021
, “
Robust Control Co-Design With Receding-Horizon MPC
,”
Proceedings of the 2021 American Control Conference
,
New Orleans, LA
,
May 25–28
, pp.
373
379
.
32.
Bravo-Palacios
,
G.
,
Grandesso
,
G.
,
Prete
,
A. D.
, and
Wensing
,
P. M.
,
2022
, “
Robust Co-Design: Coupling Morphology and Feedback Design Through Stochastic Programming
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
2
), p.
021007
.
33.
Tsai
,
Y.-K.
, and
Malak
,
R. J.
,
2023
, “
Robust Control Co-Design Using Tube-Based Model Predictive Control
,”
Proceedings of the 2023 American Control Conference
, pp.
769
775
.
34.
Bird
,
T. J.
,
Siefert
,
J. A.
,
Pangborn
,
H. C.
, and
Jain
,
N.
,
2024
, “
A Set-Based Approach for Robust Control Co-Design
,”
Proceedings of the 2024 American Control Conference
, pp.
2564
2571
.
35.
Zhang
,
J.
, and
Ohtsuka
,
T.
,
2021
, “
Stochastic Model Predictive Control Using Simplified Affine Disturbance Feedback for Chance-Constrained Systems
,”
IEEE Control Syst. Lett.
,
5
(
5
), pp.
1633
1638
.
36.
Farina
,
M.
,
Giulioni
,
L.
, and
Scattolini
,
R.
,
2016
, “
Stochastic Linear Model Predictive Control With Chance Constraints–A Review
,”
J. Process Control
,
44
, pp.
53
67
.
37.
Mayne
,
D.
,
2015
, “
Robust and Stochastic Mpc: Are We Going in the Right Direction?
IFAC-PapersOnLine
,
48
(
23
), pp.
1
8
.
38.
Mesbah
,
A.
,
2016
, “
Stochastic Model Predictive Control: An Overview and Perspectives for Future Research
,”
IEEE Control Syst. Mag.
,
36
(
6
), pp.
30
44
.
39.
Cannon
,
M.
,
Kouvaritakis
,
B.
, and
Ng
,
D.
,
2009
, “
Probabilistic Tubes in Linear Stochastic Model Predictive Control
,”
Syst. Control Lett.
,
58
(
10–11
), pp.
747
753
.
40.
Lorenzen
,
M.
,
Allgöwer
,
F.
,
Dabbene
,
F.
, and
Tempo
,
R.
,
2015
, “
An Improved Constraint-Tightening Approach for Stochastic MPC
,”
Proceedings of the 2015 American Control Conference
, pp.
944
949
.
41.
Lorenzen
,
M.
,
Dabbene
,
F.
,
Tempo
,
R.
, and
Allgöwer
,
F.
,
2016
, “
Constraint-Tightening and Stability in Stochastic Model Predictive Control
,”
IEEE Trans. Autom. Control
,
62
(
7
), pp.
3165
3177
.
42.
Li
,
F.
,
Li
,
H.
, and
He
,
Y.
,
2022
, “
Stochastic Model Predictive Control for Linear Systems With Unbounded Additive Uncertainties
,”
J. Franklin Inst.
,
359
(
7
), pp.
3024
3045
.
43.
González
,
E.
,
Sanchis
,
J.
,
García-Nieto
,
S.
, and
Salcedo
,
J.
,
2020
, “
A Comparative Study of Stochastic Model Predictive Controllers
,”
Electronics
,
9
(
12
), p.
2078
.
44.
Lee
,
H.
,
Bujarbaruah
,
M.
, and
Borrelli
,
F.
,
2023
, “
Stochastic MPC With Realization-Adaptive Constraint Tightening
,”
Proceedings of the 2023 American Control Conference
, pp.
1838
1843
.
45.
Farina
,
M.
,
Giulioni
,
L.
,
Magni
,
L.
, and
Scattolini
,
R.
,
2015
, “
An Approach to Output-Feedback MPC of Stochastic Linear Discrete-Time Systems
,”
Automatica
,
55
, pp.
140
149
.
46.
Hewing
,
L.
, and
Zeilinger
,
M. N.
,
2019
, “
Scenario-Based Probabilistic Reachable Sets for Recursively Feasible Stochastic Model Predictive Control
,”
IEEE Control Syst. Lett.
,
4
(
2
), pp.
450
455
.
47.
Joa
,
E.
,
Bujarbaruah
,
M.
, and
Borrelli
,
F.
,
2023
, “
Output Feedback Stochastic MPC With Hard Input Constraints
,”
Proceedings of the 2023 American Control Conference
, pp.
2034
2039
.
48.
Tsai
,
Y.-K.
, and
Malak
,
R. J.
, Jr.,
2022
, “
Design of Approximate Explicit Model Predictive Controller Using Parametric Optimization
,”
ASME J. Mech. Des.
,
144
(
12
), p.
124501
.
49.
Tsai
,
Y.-K.
, and
Malak
,
R. J.
,
2021
, “
A Methodology for Designing a Nonlinear Feedback Controller Via Parametric Optimization: State-Parameterized Nonlinear Programming Control
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3A: 47th Design Automation Conference (DAC)
, p.
V03AT03A011
.
50.
Phadke
,
M. S.
,
1995
,
Quality Engineering Using Robust Design
, 1st ed.,
Prentice Hall
,
Hoboken, NJ
.
51.
Aswani
,
A.
,
Gonzalez
,
H.
,
Sastry
,
S. S.
, and
Tomlin
,
C.
,
2013
, “
Provably Safe and Robust Learning-Based Model Predictive Control
,”
Automatica
,
49
(
5
), pp.
1216
1226
.
52.
Gazar
,
A.
,
Khadiv
,
M.
,
Del Prete
,
A.
, and
Righetti
,
L.
,
2021
, “
Stochastic and Robust MPC for Bipedal Locomotion: A Comparative Study on Robustness and Performance
,”
2020 IEEE-RAS 20th International Conference on Humanoid Robots
, pp.
61
68
.
53.
McAllister
,
R. D.
, and
Rawlings
,
J. B.
,
2023
, “
On the Inherent Distributional Robustness of Stochastic and Nominal Model Predictive Control
,”
IEEE Trans. Autom. Control
,
69
(
2
), pp.
741
754
.
54.
McAllister
,
R. D.
, and
Rawlings
,
J. B.
,
2022
, “
The Stochastic Robustness of Nominal and Stochastic Model Predictive Control
,”
IEEE Trans. Autom. Control
,
68
(
10
), pp.
5810
5822
.
55.
Mayne
,
D. Q.
,
Seron
,
M. M.
, and
Raković
,
S.
,
2005
, “
Robust Model Predictive Control of Constrained Linear Systems With Bounded Disturbances
,”
Automatica
,
41
(
2
), pp.
219
224
.
56.
Kofman
,
E.
,
De Doná
,
J. A.
, and
Seron
,
M. M.
,
2012
, “
Probabilistic Set Invariance and Ultimate Boundedness
,”
Automatica
,
48
(
10
), pp.
2670
2676
.
57.
Hewing
,
L.
,
Carron
,
A.
,
Wabersich
,
K. P.
, and
Zeilinger
,
M. N.
,
2018
, “
On a Correspondence Between Probabilistic and Robust Invariant Sets for Linear Systems
,”
Proceedings of the 2018 European Control Conference
, pp.
1642
1647
.
58.
Hewing
,
L.
, and
Zeilinger
,
M. N.
,
2018
, “
Stochastic Model Predictive Control for Linear Systems Using Probabilistic Reachable Sets
,”
Proceedings of the 2018 IEEE Conference on Decision and Control
, pp.
5182
5188
.
59.
Tsai
,
Y.-K.
,
2023
,
Control Co-Design Using Parametric Optimization
,
Texas A&M University
,
College Station, TX
. https://hdl.handle.net/1969.1/202935
60.
Hewing
,
L.
,
Wabersich
,
K. P.
, and
Zeilinger
,
M. N.
,
2020
, “
Recursively Feasible Stochastic Model Predictive Control Using Indirect Feedback
,”
Automatica
,
119
, p.
109095
.
61.
Köhler
,
J.
, and
Zeilinger
,
M. N.
,
2022
, “
Recursively Feasible Stochastic Predictive Control Using an Interpolating Initial State Constraint
,”
IEEE Control Syst. Lett.
,
6
, pp.
2743
2748
.
62.
Ono
,
M.
,
2012
, “
Joint Chance-Constrained Model Predictive Control With Probabilistic Resolvability
,”
Proceedings of the 2012 American Control Conference
, pp.
435
441
.
63.
Mayne
,
D. Q.
,
2018
, “
Competing Methods for Robust and Stochastic MPC
,”
IFAC-PapersOnLine
,
51
(
20
), pp.
169
174
.
64.
Herceg
,
M.
,
Kvasnica
,
M.
,
Jones
,
C.
, and
Morari
,
M.
,
2013
, “
Multi-Parametric Toolbox 3.0
,”
Proceedings of the European Control Conference
, pp.
502
510
. http://control.ee.ethz.ch/
65.
Galvan
,
E.
, and
Malak
,
R. J.
,
2015
, “
P3ga: An Algorithm for Technology Characterization
,”
ASME J. Mech. Des.
,
137
(
1
), p.
011401
.
66.
Galvan
,
E.
,
Malak
,
R. J.
,
Hartl
,
D. J.
, and
Baur
,
J. W.
,
2018
, “
Performance Assessment of a Multi-objective Parametric Optimization Algorithm With Application to a Multi-physical Engineering System
,”
Struct. Multidiscipl. Optim.
,
58
(
2
), pp.
489
509
.
67.
Tsai
,
Y.-K.
, and
Malak
,
R. J., Jr.
,
2024
, “
Surrogate-Assisted Constraint-Handling Technique for Parametric Multi-objective Optimization
,”
Struct. Multidiscipl. Optim.
,
67
(
9
), p.
167
.
68.
Geromel
,
J. C.
,
1989
, “
Convex Analysis and Global Optimization of Joint Actuator Location and Control Problems
,”
IEEE Trans. Autom. Control
,
34
(
7
), pp.
711
720
.
69.
Chanekar
,
P. V.
,
Chopra
,
N.
, and
Azarm
,
S.
,
2018
, “
Co-Design of Linear Systems Using Generalized Benders Decomposition
,”
Automatica
,
89
, pp.
180
193
.
70.
Huang
,
K.
,
Wei
,
K.
,
Li
,
F.
,
Yang
,
C.
, and
Gui
,
W.
,
2022
, “
LSTM-MPC: A Deep Learning Based Predictive Control Method for Multimode Process Control
,”
IEEE. Trans. Ind. Electron.
,
70
(
11
), pp.
11544
11554
.
71.
Park
,
J.
,
Babaei
,
M. R.
,
Munoz
,
S. A.
,
Venkat
,
A. N.
, and
Hedengren
,
J. D.
,
2023
, “
Simultaneous Multistep Transformer Architecture for Model Predictive Control
,”
Comput. Chem. Eng.
,
178
, p.
108396
.
72.
Jung
,
M.
,
da Costa Mendes
,
P. R.
,
Önnheim
,
M.
, and
Gustavsson
,
E.
,
2023
, “
Model Predictive Control When Utilizing LSTM as Dynamic Models
,”
Eng. Appl. Artif. Intell.
,
123
, p.
106226
.
73.
Chen
,
Y.-P.
,
Karkaria
,
V.
,
Tsai
,
Y.-K.
,
Rolark
,
F.
,
Quispe
,
D.
,
Gao
,
R. X.
,
Cao
,
J.
, and
Chen
,
W.
,
2025
, “
Real-Time Decision-Making for Digital Twin in Additive Manufacturing With Model Predictive Control Using Time-Series Deep Neural Networks
,”
arXiv:2501.07601
. https://arxiv.org/abs/2501.07601
You do not currently have access to this content.