This paper presents a systematic study of various monitoring methods suitable for automated monitoring of manufacturing processes. In general, monitoring is composed of two phases: learning and classification. In the learning phase, the key issue is to establish the relationship between monitoring indices (selected signature features) and the process conditions. Based on this relationship and the current sensor signals, the process condition is then estimated in the classification phase. The monitoring methods discussed in this paper include pattern recognition, fuzzy systems, decision trees, expert systems and neural networks. A brief review of signal processing techniques commonly used in monitoring, such as statistical analysis, spectral analysis, system modeling, bi-spectral analysis and time-frequency distribution, is also included.

1.
Agogino
A. M.
,
Srinivas
S.
, and
Schneider
K. M.
,
1988
, “
Multiple Sensor Expert System for Diagnostic Reasoning, Monitoring and Control of Mechanical Systems
,”
Mech. Systems and Signal Processing
, Vol.
2
, pp.
165
185
.
2.
Antoniou, A., 1979, Digital Filters—Analysis and Design, McGraw-Hill Book Company.
3.
Barker
R. W.
,
Klutke
G.
, and
Hinich
M. J.
,
1993
, “
Monitoring Rotating Tool Wear Using Higher-Order Spectral Features
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
115
, pp.
23
29
.
4.
Basseville
M.
,
1988
, “
Detecting Changes in Signals and Systems—A Survey
,”
Automatica
, Vol.
34
, No.
3
, pp.
309
326
.
5.
Bezdek, J. C., 1981, Pattern Recognition with Fuzzy Objective Function Algorithm, Plenum Press, New York.
6.
Brawley, G. H., 1989, “Diagnostic Health Condition Performance Monitoring—Does This Make Sense?” Proc. of the 1st Int. Machinery Monitoring & Diagnostic Conference, pp. 215–221.
7.
Carter, C., Catlett, J., and Buda, R., 1988, “Testing Continuous Attributes in Class Probability Trees,” Artificial Intelligence Developments and Applications, Gero, J. S., and Stanton, R., eds., Elsevier Science Publishers, B.V., pp. 291–300.
8.
Cempel
C.
,
1990
, “
Limit Value in the Practice of Machine Vibration Diagnostics
,”
Mechanic Systems and Signal Processing
, Vol.
4
, No.
6
, pp.
483
493
.
9.
Chen
Y. B.
,
Sha
J. L.
, and
Wu
S. M.
,
1990
, “
Diagnosis of the Tapping Process by Information Measure and Probability Voting Approach
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
112
, pp.
319
325
.
10.
Chen, Y., and Wu, S. M., 1987, “Machinery Condition Monitoring by Prediction Error Analysis,” Intelligent and Integrated Manufacturing Analysis and Synthesis, ASME PED-Vol. 25, pp. 129–140.
11.
Cheng, J., et al., 1988, “Improved Decision Trees: A Generalized Version of ID3,” Proceedings of the Fifth International Conf. on Machining Learning, June, University of Michigan, pp. 1–7.
12.
Choi
H.
, and
Williams
W. J.
,
1989
, “
Improved Time-Frequency Representation of Multicomponent Signals Using Exponential Kernels
,”
IEEE Trans. on ASSP
, Vol.
37
, No.
6
, pp.
862
871
.
13.
Claasen
T. A. C. M.
, and
Mecklenbrauker
W. F. G.
,
1980
, “
The Wigner Distribution—A Tool for Time-Frequency Signal Analysis, Part I: Continuous-Time Signals
,”
Philips J. Res.
, Vol.
35
, pp.
217
250
.
14.
Claasen
T. A. C. M.
, and
Mecklenbrauker
W. F. G.
,
1980
, “
The Wigner Distribution—A Tool for Time-Frequency Signal Analysis, Part II: Discrete-Time Signals
,”
Philips J. Res.
, Vol.
35
, pp.
276
300
.
15.
Claasen
T. A. C. M.
, and
Mecklenbrauker
W. F. G.
,
1980
, “
The Wigner Distribution—A Tool for Time-Frequency Signal Analysis, Part III: Relations with Other Time-Frequency Signal Transformation
,”
Philips J. Res.
, Vol.
35
, pp.
372
389
.
16.
Danai
K.
, and
Ulsoy
A. G.
,
1987
, “
An Adaptive Observer for On-Line Tool Wear Estimation in Turning—Part I: Theory
,”
Mechanical Systems and Signal Processing
, Vol.
1
, No.
2
, pp.
211
225
.
17.
DeSilva, C. W., 1989, Control Sensors and Actuators, Prentice-Hall, Inc., Chapter 2-6.
18.
Du, R., 1989, “Methods for Intelligent On-Line Monitoring and Diagnosis of Manufacturing Processes,” Ph.D. thesis, The University of Michigan.
19.
Du
R.
, and
Wu
S. M.
,
1990
, “
Alarm Threshold Estimation for On-Line Monitoring of Machining Processes
,”
Proc. of Manufacturing International ’90
, Vol.
5
, pp.
35
40
.
20.
Du, R., Yan, D., and Elbestawi, M. A., 1991, “Time-Frequency Distribution of Acoustic Emission for Tool Wear Detection in Turning,” Proc. of 4th World Conference on Acoustic Emission, Boston, MA, pp. 269–285.
21.
Du
R.
,
Elbestawi
M. A.
, and
Li
S.
,
1992
, “
Tool Condition Monitoring in Turning Using Fuzzy Set Theory
,”
Int. J. of Mach. Tools Manufact.
, Vol.
32
, No.
6
, pp.
781
796
.
22.
Du
R.
,
Elbestawi
M. A.
, and
Wu
S. M.
,
1995
, “
Automated Monitoring of Manufacturing Processes, Part II: Applications
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
117
, No.
2
, pp.
133
141
.
23.
Du, R., Tarajos, J. M., and Gawlik, B. K., 1992, “A New Strategy for Preventive Monitoring with an Application in Tool Wear Monitoring in Turning Using Cutting Forces,” Proc. of the 5th International Conference on Production Engineering, Design & Control, Alexandria, Egypt, Dec.
24.
Elbestawi, M. A., Marks, J., and Papazafiriou, T., 1989, Journal of Mechanical Systems and Signal Processing, Vol. 3, No. 3, pp. 305–315.
25.
Everitt, B., 1980, “Cluster Analysis,” Richard Clay Ltd.
26.
Flandrin, P., 1990, “A Time-Frequency Formulation of Optimum Detection,” Laboratoire de Traitement du Signal, Report #ICPI-TS 8703.
27.
Freed, D., and Wright, D., 1986, “FAXS, An Expert System for the Analysis of Mechanical Failures,” ASME Proc. on Computers in Engineering.
28.
Gams
M.
, and
Drobnic
M.
,
1991
, “
Learning from Examples—A Uniform View
,”
Int. J. Man-Machine Studies
, Vol.
34
, pp.
49
68
.
29.
Garey, M. R., and Johnson, D. S., 1979, Computers and Intractability, A Guide to the Theory of NP-Completeness, W. H. Freeman and Company.
30.
Goodwin, G. C., and Sin, K. S., 1984, Adaptive Filter Prediction and Control, Prentice-Hall Co.
31.
Gunna
J.
, and
Alty
J. L.
,
1991
, “
Knowledge Engineering for Industrial Expert Systems
,”
Automatica
, Vol.
27
, No.
1
, pp.
97
114
.
32.
Gupta
T.
, and
Ghosh
B. K.
,
1988
, “
A Survey of Expert Systems in Manufacturing and Process Planning
,”
Computers in Industry
, Vol.
11
, pp.
195
204
.
33.
Gutierrez, H., Wang, J., and Grondin, R. O., 1989, “Estimating Hidden Units for Two-Layer Perceptons,” Neural Network Theory, Haykin, S., ed., pp. 120–123, McMaster University.
34.
Hinich
M. J.
, and
Wilson
G. R.
,
1990
, “
Detection of Non-Gaussian Signals in Non-Gaussian Noise Using the Bispectrum
,”
IEEE Trans. on ASSP
, Vol.
38
, No.
7
, July, pp.
1126
1131
.
35.
Hinich
M. J.
,
1990
, “
Detecting a Transient Signal by Bispectral Analysis
,”
IEEE Trans. on ASSP
, Vol.
38
, No.
7
, July, pp.
1277
1283
.
36.
Hogg, R. V., and Craig, A. T., 1978, “Introduction to Mathematical Statistics,” 4th edition, MacMillan Publishing Co.
37.
Houshmand
A. A.
, and
Kannatey-Asibu
E.
,
1989
, “
Statistical Process Control of Acoustic Emission for Cutting Tool Monitoring
,”
Mechanical Engineering and Signal Processing
, Vol.
3
, No.
4
, pp.
405
424
.
38.
Iwata
K.
,
1988
, “
Application of Expert Systems to Manufacturing in Japan
,”
Int. J. of Advanced Manufacturing Technology
, Vol.
3
, No.
3
, pp.
23
37
.
39.
Kandel, A., 1982, Fuzzy Techniques in Pattern Recognition, John Wiley & Sons.
40.
Kay, S. M., 1988, Modern Spectral Estimation, Theory and Applications, Prentice Hall.
41.
Klameck
B. E.
, and
Hanchi
J.
,
1990
, “
Wear Process Description Based on Acoustic Emission
,”
ASME Journal of Tribology
, Vol.
113
, July, pp.
469
476
.
42.
Klir, J. G., and Folger, A. T., 1988, Fuzzy Sets, Uncertainty, and Information, Prentice Hall.
43.
Kodratoff, Y., and Michalski, R., eds., 1990, Machine Learning, An Artificial Intelligence Approach, Vol. III, Chapter 1, Morgan Kaufmann Publishers, Inc.
44.
Koren, Y., 1983, Computer Control of Manufacturing Systems, McGraw-Hill Book Co.
45.
Li
P. G.
, and
Wu
S. M.
,
1987
, “
Monitoring of Drill Wear States Using Fuzzy Pattern Recognition Technique
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
110
, No.
2
, pp.
297
300
.
46.
Li, S., Elbestawi, M. A., and Du, R., 1992, “A Fuzzy Logic Approach for Multi-Sensor Process Monitoring in Machining,” ASME PED-Vol. 55, Sensor and Signal Processing for Manufacturing, pp. 1–16.
47.
Lipmann
R. P.
,
1987
, “
An Introduction of Computing with Neural Nets
,”
IEEE ASSP
, Vol.
4
, pp.
4
22
.
48.
Liu
D.
,
1986
, “
A Case Study of the HICLASS™ Software System, a Manufacturing Expert System
,”
Knowledge-based Expert Systems for Manufacturing
, PED-Vol.
24
, pp.
12
25
.
49.
Lyon, R. H., 1987, Machinery Noise and Diagnostics, Butterworths Publishers.
50.
Michalski, R. S., 1975, “Synthesis of Optimal and Quasi-Optimal Variable Valued Logic Formulas,” Proceedings of the 1975 Int. Symposium on Multiple-Valued Logic, Bloomington, IN, pp. 76–87.
51.
Mitchell, S. J., 1981, An Introduction to Machinery Analysis and Monitoring, PennWell Books, Inc.
52.
Monostori
L.
,
1986
, “
Learning Procedures in Machine Tool Monitoring
,”
Computers in Industry
, Vol.
7
, pp.
53
64
.
53.
Nikias
C. L.
, and
Raghuveer
M. R.
,
1987
, “
Bispectrum Estimation: A Digital Signal Processing Framework
,”
Proc. of IEEE
, Vol.
75
, pp.
869
891
.
54.
Nocetti, D. F. G., and Fleming, P. J., 1992, Parallel Processing in Digital Control, Springer-Verlag Co.
55.
Pandit
S. M.
, and
Kashou
S.
,
1982
, “
Data Dependent System Strategy of On-Line Tool Wear Sensing
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
104
, pp.
217
223
.
56.
Pau
L.
,
1989
, “
Knowledge Representation Approaches in Sensor Fusion
,”
Automatica
, Vol.
25
, No.
2
, pp.
207
214
.
57.
Pau, L. F., 1981, Failure Diagnosis and Performance Monitoring, Marcel Dekker, Inc.
58.
Pham
D. T.
, and
Pham
P. T. N.
,
1988
, “
Expert Systems in Mechanical and Manufacturing Engineering
,”
Int. J. of Advanced Manufacturing Technology
, Vol.
3
, No.
3
, pp.
3
21
.
59.
Qi
Z.
,
Lu
Y.
, and
Yang
S.
,
1990
, “
Non-Stationary Modeling of Vibration Signals for Monitoring the Condition of Machinery
,”
Mechanical Systems and Signal Processing
, Vol.
4
, No.
5
, pp.
355
365
.
60.
Quinlan
J. R.
,
1986
, “
Induction of Decision Trees
,”
Machine Learning
, Vol.
1
, pp.
81
106
.
61.
Quinlan
J. R.
,
1987
, “
Simplifying Decision Trees
,”
Int. J. Man-Machine Studies
, Vol.
27
, pp.
221
234
.
62.
Rangwala
S.
, and
Dornfeld
D.
,
1990
, “
Sensor Integration Using Neural Networks for Intelligent Tool Condition Monitoring
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
112
, No.
8
, pp.
219
228
.
63.
Ruspini
E.
,
1981
, “
Numerical Methods for Fuzzy Clustering
,”
Inf. Sci.
, Vol.
6
, pp.
273
284
.
64.
Scharf, L. L., 1991, Statistical Signal Processing, Detection, Estimation, and Time Series Analysis, Addison Wesley Publishing Company, Inc.
65.
Shortliffe, E. H., 1976, Computer-Based Medical Consultation, MYCIN, Elsevier Scientific Pub. Co., Amsterdam.
66.
Takata
S.
, and
Sata
T.
,
1986
, “
Model Referenced Monitoring and Diagnosis—Application to the Manufacturing Systems
,”
J. of Computers in Industry
, Vol.
7
, pp.
31
43
.
67.
Tlusty
J.
, and
Ismail
F.
,
1981
, “
Basic Non-Linearity in Machining Chatter
,”
Annals of the CIRP
, Vol.
30
, pp.
289
304
.
68.
Tlusty
J.
, and
Andrews
G. C.
,
1983
, “
A Critical Review of Sensors for Unmanned Machining
,”
Annals of CIRP
, Vol.
32
, No.
2
, pp.
563
572
.
69.
Ulsoy
A. G.
,
Koren
Y.
, and
Rasmussen
F.
,
1983
, “
Principle Development in the Adaptive Control of Machine Tools
,”
ASME Journal of Dynamic Systems, Measurement, and Control
, Vol.
105
, pp.
107
112
.
70.
Wang, M., Zhu, J. Y., and Zhang, Y. Z., 1985, “Fuzzy Pattern Recognition of the Metal Cutting States,” Annals of the CIRP, Vol. 34, No. 1.
71.
Walker
A.
,
1986
, “
Knowledge Systems: Principles and Practice
,”
IBM Journal of Research & Development
, Vol.
30
, No.
1
, p.
2
13
.
72.
Waterman, D. A., 1986, A Guide to Expert Systems, Addison Welsey, Reading, MA.
73.
Whitehall
B. L.
,
Lu
S. C.-Y.
, and
Stepp
R. E.
,
1990
, “
CAQ: A Machine Learning Tool for Engineering
,”
Artificial Intelligence in Engineering
, Vol.
5
, No.
4
, pp.
189
198
.
74.
Willems
J. C.
,
1986
, “
From Time Series to Linear Systems—Part I. Finite Dimensional Linear Time Invariant Systems
,”
Automatica
, Vol.
22
, No.
5
, pp.
561
580
.
75.
Willems
J. C.
,
1986
, “
From Time Series to Linear Systems—Part II. Exact Modeling
,”
Automatica
, Vol.
22
, No.
6
, pp.
675
694
.
76.
Willems
J. C.
,
1986
, “
From Time Series to Linear Systems—Part III. Approximate Modeling
,”
Automatica
, Vol.
23
, No.
1
, pp.
87
115
.
77.
Wu
S. M.
,
1977
, “
Dynamic Data System—A New Modeling Technique
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
99
, pp.
708
714
.
78.
Wu, S. M., Tobin, T. H., and Chow, 1980, “Signature Analysis for Mechanical System via Dynamic Data System (DDS) Monitoring Technology,” ASME Journal of Mechanical Design, Vol. 4.
79.
Xistris
G. D.
,
Boast
G. K.
, and
Sankar
T. S.
,
1980
, “
Time Domain Analysis of Machinery Vibration Signals Using Digital Techniques
,”
ASME Journal of Mechanical Design
, April 1980, Vol.
102
, pp.
211
216
.
80.
Yan
Y.
, and
Shimogo
T.
,
1990
, “
New Indices in the Sequence Domain and Their Application to Condition Monitoring of Mechanical System
,”
Mech. Systems & Signal Processing
, Vol.
4
, No.
4
, pp.
269
277
.
81.
Zadeh
L. A.
,
1973
, “
Outline of a New Approach to the Analysis of Complex Systems and Decision Processes
,”
IEEE Trans.
, Vol.
SMC-3
, p.
28
28
.
82.
Zadeh
L. A.
, 1978, “
Fuzzy Sets as a Basis for a Possibility Theory
,”
Fuzzy Sets and Systems
, Vol.
1
, No.
3
, p.
28
28
.
This content is only available via PDF.
You do not currently have access to this content.