A numerically controlled machining verification method is developed based on a formulation for delineating the volume generated by the motion of a cutting tool on the workpiece (stock). Varieties and subvarieties that are subsets of some Eucledian space defined by the zeros of a finite number of analytic functions are computed and are characterized as closed form equations of surface patches of this volume. The motion of a cutter tool is modeled as a surface undergoing a sweep operation along another geometric entity. A topological space describing the swept volume will be built as a stratified space with corners. Singularities of the variety are loci of points where the Jacobian of the manifold has lower rank than maximal. It is shown that varieties appearing inside the manifold representing the removed material are due to a lower degree strata of the Jacobian. Some of the varieties are complicated and will be shown to be reducible because of their parametrization and are addressed. Benefits of this method are evident in its ability to depict the manifold and to compute a value for the volume.

1.
Wang
,
W. P.
, and
Wang
,
K. K.
,
1986
, “
Geometric Modeling for Swept Volume of Moving Solids
,”
IEEE Comput. Graphics Appl.
,
6
, No.
12
, pp.
8
17
.
2.
Boussac, S., and Crosnier, A., 1996, “Swept volumes generated from deformable objects application to NC verification,” Proceedings of the 13th IEEE International Conference on Robotics and Automation, Part 2 (of 4) Apr 22–28, Vol. 2, Minneapolis, MN, pp. 1813–1818.
3.
Liu
,
C.
, and
Esterling
,
D.
,
1997
, “
Solid Modeling of 4-Axis Wire EDM Cut Geometry
,”
Comput.-Aided Des.
,
29
, No.
12
, pp.
803
810
.
4.
Blackmore
,
D.
,
Leu
,
M. C.
, and
Wang
,
L. P.
,
1997
, “
Sweep-envelope differential equation algorithm and its application to NC machining verification
,”
Comput.-Aided Des.
,
29
, No.
9
, pp.
629
637
.
5.
Leu
,
M. C.
,
Wang
,
L.
, and
Blackmore
,
D.
,
1997
, “
Verification program for 5-axis NC machining with general APT tools
CIRP Ann. Manuf. Technol.
,
46
, No.
1
, pp.
419
424
.
6.
Voelker, H. B., and Hunt, W. A., 1985, “The Role of Solid Modeling in Machining Process Modeling and NC Verification,” SAE Tech. Paper #810195.
7.
Menon, J. P., and Voelcker, H. B., 1992, “Toward a comprehensive formulation of NC verification as a mathematical and computational problem,” Proceedings of the 1992 Winter Annual Meeting of ASME, Nov 8–13, 59, Anaheim, CA, pp. 147–164.
8.
Oliver
,
J.
, and
Goodman
,
E.
,
1990
, “
Direct Dimensional NC Verification
Comput.-Aided Des.
,
22
, pp.
3
9
.
9.
Narvekar, A. P., Huang, Y., and Oliver, J., 1992, “Intersection of rays with parametric envelope surfaces representing five-axis NC milling tool swept volumes,” Proceedings of the 1992 18th Annual ASME Design Automation Conference, Vol. 44, Scottsdale, AZ, pp. 223–230.
10.
Takata
,
S.
,
Tsai
,
M. D.
, and
Inui
,
M.
,
1992
, “
A cutting simulation system for machinability evaluation using a workpiece model
,”
Ann. CIRP
,
38
, pp.
539
542
.
11.
Jerard
,
R.
, and
Drysdale
,
R.
,
1988
, “
Geometric Simulation of Numerical Control Machinery
,”
ASME Comput. Eng.
,
2
, pp.
129
136
.
12.
Jerard, R., and Drysdale, R., 1991, “Methods for geometric modeling, simulation, and spatial verification of NC machining programs,” Product Modeling for Computer Aided Design, North Holland, Amsterdam, pp. 1–14.
13.
Koren
,
Y.
, and
Lin
,
R. S.
,
1995
, “
Five-axis surface interpolators
,”
Ann. CIRP
,
44
, No
1
, pp.
379
382
.
14.
Menon
,
J. P.
, and
Robinson
,
D. M.
,
1993
, “
Advanced NC verification via massively parallel raycasting
,”
ASME Manuf. Rev.
,
6
, pp.
141
154
.
15.
Oliver
,
J. H.
,
1990
, “
Efficient Intersection of Surface Normals with Milling Tool Swept Volumes for Discrete Three-axis NC Verification
ASME DE
,
23
, No.
1
, pp.
159
164
.
16.
Liang, X., Xiao, T., Han, X., and Ruan, J. X., 1997, Simulation Software GNCV of NC Verification, Author Affiliation: ICIPS Proceedings of the 1997 IEEE International Conference on Intelligent Processing Systems, Part 2 Oct 28–31, Vol. 2, Beijing, China, pp. 1852–1856.
17.
Liu
,
C.
,
Esterling
,
D. M.
,
Fontdecaba
,
J.
, and
Mosel
,
E.
,
1996
, “
Dimensional verification of NC machining profiles using extended quadtrees
,”
Comput.-Aided Des.
,
28
, No.
11
, pp.
845
852
.
18.
Abdel-Malek
,
K.
, and
Yeh
,
H.
,
1997
, “
Geometric Representation of the Swept Volume Using Jacobian Rank-Deficiency Conditions
,”
Comput.-Aided Des.
,
29
, No.
6
, pp.
457
468
.
19.
Abdel-Malek
,
K.
, and
Yeh
,
H. J.
,
1997
, “
Analytical Boundary of the Workspace for General 3-DOF Mechanisms
,”
Int. J. Robot. Res.
,
16
, No.
2
, pp.
1
12
.
20.
Abdel-Malek
,
K.
,
Adkins
,
F.
,
Yeh
,
H. J.
, and
Haug
,
E. J.
,
1997
, “
On the Determination of Boundaries to Manipulator Workspaces
,”
Rob. Comput.-Integr. Manufact.
,
13
, No.
1
, pp.
63
72
.
21.
Abdel-Malek
,
K.
,
Yeh
,
H. J.
, and
Othman
,
S.
,
1998
, “
Swept Volumes, Void and Boundary Identification
,”
Comput.-Aided Des.
,
30
, No.
13
, pp.
1009
1018
.
22.
Blackmore
,
D.
,
Leu
,
M. C.
,
Wang
,
L. P.
, and
Jiang
,
H.
,
1997
, “
Swept Volumes: a retrospective and prospective view
,”
Neural Parallel Sci. Comput.
,
5
, pp.
81
102
.
23.
Ahn
,
J. C.
,
Kim
,
M. S.
, and
Lim
,
S. B.
,
1997
, “
Approximate general sweep boundary of 2D curved object
,”
CVGIP: Comput. Vis. Graph. Image Process.
,
55
, pp.
98
128
.
24.
Elber
,
G.
,
1997
, “
Global error bounds and amelioration of sweep surfaces
,”
Comput.-Aided Des.
,
29
, pp.
441
447
.
25.
Ling
,
Z. K.
, and
Chase
,
T.
,
1996
, “
Generating the swept area of a body undergoing planar motion
,”
ASME J. Mech. Des.
,
118
, pp.
221
233
.
26.
Sourin
,
A.
, and
Pasko
,
A.
,
1996
, “
A function representation for sweeping by a moving solid
,”
IEEE Trans. Vis. Comput. Graph.
,
2
, pp.
11
18
.
27.
Spivak, M., 1968, Calculus on Manifolds, Benjamin/Cummings.
28.
Guillemin, V., and Pollack, A., 1974, Differential Topology, Prentice-Hall, Englewood Cliffs, NJ.
29.
Lu, Y. C., 1976, Singularity Theory and an Introduction to Catastrophe Theory, Springer-Verlag, New York.
30.
Farin, G., 1993, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, CA.
You do not currently have access to this content.