This paper presents a new modeling framework for tool wear monitoring in machining processes using hidden Markov models (HMMs). Feature vectors are extracted from vibration signals measured during turning. A codebook is designed and used for vector quantization to convert the feature vectors into a symbol sequence for the hidden Markov model. A series of experiments are conducted to evaluate the effectiveness of the approach for different lengths of training data and observation sequence. Experimental results show that successful tool state detection rates as high as 97% can be achieved by using this approach.

1.
Kuo
,
R. J.
, and
Cohen
,
P. H.
,
1999
, “
Multi-sensor Integration for On-line Tool Wear Estimation Through Radial Basis Function Networks and Fuzzy Neural Network
,”
Neural Networks
,
12
, pp.
355
370
.
2.
Kurada
,
S.
, and
Bradley
,
C.
,
1997
, “
A Review of Machine Vision Sensors for Tool Condition Monitoring
,”
Computer in Industry
,
34
, pp.
55
72
.
3.
Taraman, K., Swando, R., and Yamauchi, W., 1974, “Relationship Between Tool Forces and Flank Wear,” SME Tech Pap, March, 15p.
4.
Fromson, R., and Shum, L. Y., 1984, “Tool Wear and Tool Failure Monitoring System,” Westinghouse Electric Corp., USA, USP 04442494.
5.
Liang
,
S. Y.
, and
Dornfeld
,
D. A.
,
1989
, “
Tool Wear Detection Using Time Series Analysis of Acoustic Emission
,”
ASME J. Eng. Ind.
,
111
, pp.
199
199
.
6.
El-wardany
,
T. I.
,
Gao
,
D.
, and
Elbestawi
,
M. A.
,
1996
, “
Tool Condition Monitoring in Drilling Using Vibration Signature Analysis
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
687
711
.
7.
Emel
,
E.
, and
Kannatey-Asibu
,
E.
,
1988
, “
Tool Failure Monitoring in Turning by Pattern Recognition Analysis of AE Signals
,”
ASME J. Eng. Ind.
,
110
, pp.
137
145
.
8.
Emel
,
E.
, and
Kannatey-Asibu
,
E.
,
1989
, “
Acoustic Emission and Force Sensor Fusion for Monitoring the Cutting Process
,”
Int. J. Mech. Sci.
,
31
, pp.
795
809
.
9.
Ko
,
T. J.
,
Cho
,
D. W.
, and
Lee
,
J. M.
,
1992
, “
Fuzzy Pattern Recognition for Tool Wear Monitoring in Diamond Turning
,”
CIRP Ann.
,
41
, pp.
125
128
.
10.
Lee
,
W. B.
,
Cheung
,
C. F.
,
Chiu
,
W. M.
, and
Chan
,
L. K.
,
1997
, “
Automatic Supervision of Blanking Tool Wear using Pattern Recognition Analysis
,”
Int. J. Mach. Tools Manuf.
,
37
, pp.
1079
1095
.
11.
Lim
,
G. H.
,
1995
, “
Tool-wear Monitoring in Machine Turning
,”
J. Mater. Process. Technol.
,
51
, pp.
25
36
.
12.
Miyoshi
,
Y.
,
1996
, “
Abnormal Cutting State Detection Using Model Parameters
,”
Int. J. Jpn. Soc. Precis. Eng.
,
30
(
1
), pp.
41
46
.
13.
Ravindra
,
H. V.
,
Srinivasa
,
Y. G.
, and
Krishnamurthy
,
R.
,
1997
, “
Acoustic Emission for Tool Condition Monitoring in Metal Cutting
,”
Wear
,
212
, pp.
78
84
.
14.
Kumar
,
S. A.
,
Ravindra
,
H. V.
, and
Srinivasa
,
Y. G.
,
1997
, “
In-process Tool Wear Monitoring Through Time Series Modeling and Pattern Recognition
,”
Int. J. Prod. Res.
,
35
, pp.
739
751
.
15.
Dornfeld
,
D. A.
,
1990
, “
Neural Network Sensor Fusion for Tool Condition Monitoring
,”
CIRP Ann.
,
39
(
1
), pp.
101
105
.
16.
Wang, Z., and Dornfeld, D. A., 1992, “In-process Tool Wear Monitoring Using Neural Networks,” Japan/USA Symposium on Flexible Automation, 1, pp. 263–269.
17.
Lin
,
C. T.
, and
Lee
,
C. S. G.
,
1994
, “
Reinforcement Structure/Parameter Learning for Neural Network Based Fuzzy Logic Control Systems
,”
IEEE Trans. Fuzzy Syst.
,
2
, pp.
46
63
.
18.
Das
,
S.
,
Chattopadhyay
,
A. B.
, and
Murthy
,
A. S. R.
,
1996
, “
Force Parameters for On-line Tool Wear Estimation: A Neural Network Approach
,”
Neural Networks
,
9
, pp.
1639
1645
.
19.
Lin
,
S. C.
, and
Ting
,
C. J.
,
1996
, “
Drill Wear Monitoring Using Neural Networks
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
465
475
.
20.
Kuo
,
R. J.
, and
Cohen
,
P. H.
,
1998
, “
Intelligent Tool Wear Estimation System Through Artificial Neural Networks and Fuzzy Modeling
,”
Artif. Intell. Eng.
,
12
(
3
), pp.
229
242
.
21.
Cho
,
Wongyu
,
Lee
,
S. W.
, and
Kim
,
Jin H.
,
1995
, “
Modeling and Recognition of Cursive Words with Hidden Markov Models
,”
Pattern Recogn.
,
28
(
12
), pp.
1941
1953
.
22.
Heck, L. P., and McClellan, J. H., 1991, “Mechanical System Monitoring using Hidden Markov Models,” IEEE International Conference on Acoustic, Speech and Signal Processing Proceedings 91, 3, pp. 1697–1700.
23.
Owsley
,
L. M. D.
,
Atlas
,
L. E.
, and
Bernard
,
G. D.
,
1997
, “
Self-organizing Feature Maps and Hidden Markov Models for Machine-tool Monitoring
,”
IEEE Trans. Signal Process.
,
45
(
11
), pp.
2787
2798
.
24.
Ertunc
,
H. M.
,
Loparo
,
K. A.
, and
Ocak
,
H.
,
2001
, “
Tool Wear Condition Monitoring in Drilling Operations using Hidden Markov Models (HMMs)
,”
Int. J. Mach. Tools Manuf.
,
41
, pp.
1363
1384
.
25.
Lee
,
M. Y.
,
Thomas
,
C. E.
, and
Wildes
,
G.
,
1987
, “
Review—Prospects for Inprocess Diagnosis of Metal Cutting by Monitoring Vibration Signals
,”
J. Mater. Sci.
,
22
, pp.
3821
3890
.
26.
Rabiner
,
L. R.
,
1989
, “
A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition
,”
Proc.-IEEE Ultrason. Symp.
,
77
(
2
), pp.
257
286
.
27.
Lee, Kai-Fu, 1989, Automatic Speech Recognition, Kluwer Academic Publishers.
28.
ISO 3685, 1993, “Tool-Life Testing with Single-point Turning Tools,” ISO 3685:1993(E), International Standard, Second Edition, 1993-11-15.
29.
Wang, L., Mehrabi, M. G., and Kannatey-Asibu, E. Jr., 2001, “Tool Wear Monitoring in Machining Processes Through Wavelet Analysis,” to be published in Transactions of NAMRI/SME, Vol. XXIX.
30.
Linde
,
Y.
,
Buzo
,
A.
, and
Gray
,
R. M.
,
1980
, “
An Algorithm for Vector Quantizer Design
,”
IEEE Trans. Commun.
,
28
, pp.
84
95
.
31.
Lu
,
M. C.
, and
Kannatey-Asibu
, Jr.,
E.
,
2000
, “
Analysis of Sound Signal Characteristics Associated with Adhesive Wear in Machining
,”
Transaction of NAMRI
,
XXVIII
, pp.
257
262
.
32.
Rabiner
,
J. C.
,
1985
, “
Some Properties of Continuous Hidden Markov Model Representations
,”
AT&T Tech. J.
,
64
(
6
), pp.
1251
1269
.
You do not currently have access to this content.