It has been well recognized that the geometry of weld pool plays a fundamental role in determining the mechanical properties of weld joints. In this research, a series of experiment has been conducted to investigate the interaction and correlation of welding current, voltage, welding speed, and arc length affecting the formation of weld pool. The effect of arc length on arc efficiency and heat distribution parameter are also examined and addressed in this paper. In addition to the experimental study, a three-dimensional finite element model has been developed to analyze transient heat flow and to predict the formation of the weld pool. The correlation among the parameters including welding current, voltage, welding speed, arc length, open-loop response and the characteristic geometry of weld pool are established. The 3-D FEM can calculate not only the transient thermal histories but also the sizes of weld pool in single-pass arc welding. In order to obtain quality welds, this model will determine the effect of arc length on the formation of weld. Furthermore, the effects of welding parameters on the Gaussian heat source parameters (arc efficiency and heat distribution parameter) are also studied. The experimental calibration and verification are carried out to verify the numerical model. Experimental data are consistent and in quantitative agreement with values from FEM simulations.

1.
Carry, H. B., 1979, Modern Welding Technology, Prentice-Hall, Englewood Cliffs, NJ.
2.
American Welding Society, 1978, Welding Handbook, Volume 2, Welding Processes—Arc and Gas Welding and Cutting, Brazing and Soldering, 7th ed., Miami, American Welding Society.
3.
Hardt
,
D. E.
, and
Katz
,
J. M.
,
1984
, “
Ultrasonic Measurement of Weld Penetration
,”
Weld. J. (Miami)
,
63
(
9
), pp.
273s–281s
273s–281s
.
4.
Lott
,
L. A.
,
1983
, “
Ultrasonic Detection of Molten/Solid Interfaces in Weld Pools
,”
Mater. Eval.
,
42
, pp.
337
341
.
5.
Johnson
,
J. A.
,
Carlson
,
N. M.
, and
Lott
,
L. A.
,
1988
, “
Ultrasonic Wave Propagation in Temperature Gradients
,”
Weld. J. (Miami)
,
67
(
3
), pp.
147
157
.
6.
Carlson
,
N. M.
, and
Johnson
,
J. A.
,
1988
, “
Ultrasonic Sensing of Weld Pool Penetration
,”
Weld. J. (Miami)
,
67
(
11
), pp.
239s–246s
239s–246s
.
7.
Renwick
,
R. J.
, and
Richardson
,
R. W.
,
1983
, “
Experimental Investigation of GTA Weld Pool Oscillations
,”
Weld. J. (Miami)
,
62
(
2
), pp.
29s–35s
29s–35s
.
8.
Sorenson, C. D., 1985, “Digital Signal Processing as a Diagnostic Tool for Gas Tungsten Arc Welding,” Ph.D Thesis, MIT Department of Material Science.
9.
Tam
,
A. S.
, and
Hardt
,
D. E.
,
1989
, “
Weld Pool Impedance for Pool Geometry Measurement: Stationary and Non-Stationary Pools
,”
ASME J. Dyn. Syst. Meas., Control
,
111
(
4
), pp.
545
553
.
10.
Zacksenhouse
,
M.
, and
Hardt
,
D. E.
,
1983
, “
Weld Pool Impedance Identification for Size Measurement and Control
,”
ASME J. Dyn. Syst., Meas. Control
,
105
(
3
), pp.
179
184
.
11.
Xiao
,
Y. H.
, and
Den Ouden
,
G.
,
1990
, “
A Study of GTA Weld Pool Oscillation
,”
Weld. J. (Miami)
,
69
(
8
), pp.
293s–298s
293s–298s
.
12.
Gladkov
,
E. A.
,
1976
, “
Construction of Parametric Penetration Depth Regulators for Welding With a Non-Consumable Electrode
,”
AVT, Svarka
,
4
, pp.
18
23
.
13.
Charbonnier, F. M., 1976, “Flash X-ray of Welding, Casting, and Cast Injury,” Proceedings of the Flash Radiographic Symposium, American Society for Nondestructive Testing, September.
14.
Richardson
,
R. W.
,
Gutow
,
D. A.
,
Anderson
,
R. A.
, and
Farson
,
D. F.
,
1984
, “
Coaxial Arc Weld Pool Viewing for Process Monitoring and Control
,”
Weld. J. (Miami)
,
63
(
3
), pp.
43
50
.
15.
Dickhaut
,
E.
, and
Eisenblatter
,
J.
,
1979
, “
Acoustic Emission Measurement During Electron Beam Welding of Nickel-Base Alloys
,”
J. Eng. Power
, Jan.,
pp.
47
52
.
16.
Nomura
,
H.
,
Satoh
,
Y.
,
Tohno
,
K.
,
Satoh
,
Y.
, and
Kurotori
,
M.
,
1980
, “
Arc Light Intensity Controls Current in SA Welding System
,”
Welding and Metal Fabrication
,
48
, pp.
457
463
.
17.
Kovacevic
,
R.
,
Zhang
,
Y. M.
, and
Li
,
L.
,
1996
, “
Monitoring of Weld Penetration Based on Weld Pool Geometrical Appearance
,”
Weld. J. (Miami)
,
75
(
10
), pp.
317s–329s
317s–329s
.
18.
Zhang
,
Y. M.
,
Wu
,
L.
,
Walcott
,
B. L.
, and
Chen
,
D. H.
,
1993
, “
Determining Joint Penetration in GTAW with Vision Sensing of Weld-Face Geometry
,”
Weld. J. (Miami)
,
72
(
10
), pp.
463s–469s
463s–469s
.
19.
Khan
,
M. A.
,
Madsen
,
N. H.
,
Goodling
,
J. S.
, and
Chin
,
B. A.
,
1986
, “
Infrared Thermograph as a Control for the Welding Process
,”
Opt. Eng.
,
25
(
6
), pp.
799
805
.
20.
Lukens
,
W. E.
, and
Morris
,
R. A.
,
1982
, “
Infrared Temperature Sensing of Cooling Rates for Arc Welding Control
,”
Weld. J. (Miami)
,
61
(
1
), pp.
27
33
.
21.
Chen
,
W.
, and
Chin
,
B. A.
,
1990
, “
Monitoring Joint Penetration Using Infrared Sensing Techniques
,”
Weld. J. (Miami)
,
69
(
4
), pp.
181s–185s
181s–185s
.
22.
Kovacevic
,
R.
,
Cao
,
Z. N.
, and
Zhang
,
Y. M.
,
1996
, “
Role of Welding Parameters in Determining the Geometrical Appearance of Weld Pool
,”
ASME J. Eng. Mater. Technol.
,
118
, pp.
689
596
.
23.
Cao
,
Z. N.
,
Zhang
,
Y. M.
, and
Kovacevic
,
R.
,
1998
, “
Numerical Dynamic Analysis of Moving GTA Weld Pool
,”
ASME J. Manuf. Sci. Eng.
,
120
(
1
), pp.
173
178
.
24.
Zacharia
,
T.
,
Eraslan
,
A. H.
, and
Aidun
,
D. K.
,
1988
, “
Modeling of Non-Autogenous Welding
,”
Weld. J. (Miami)
,
67
(
1
), pp.
18s–27s
18s–27s
.
25.
Zacharia
,
T.
,
Eraslan
,
A. H.
, and
Aidun
,
D. K.
,
1988
, “
Modeling of Autogenous Welding
,”
Weld. J. (Miami)
,
67
(
3
), pp.
53s–62s
53s–62s
.
26.
Kim
,
J. W.
, and
Na
,
S. J.
,
1994
, “
Study on the Three-Dimensional Analysis of Heat and Fluid Flow in Gas Metal Arc Welding Using Boundary-Fitted Coordinates
,”
ASME J. Eng. Ind.
,
116
(
1
), pp.
78
85
.
27.
Tekriwal
,
P.
, and
Mazumder
,
J.
,
1988
, “
Finite Element Analysis of Three-Dimensional Transient Heat Transfer in GMA Welding
,”
Weld. J. (Miami)
,
67
(
5
), pp.
150s–156s
150s–156s
.
28.
Mahin
,
K. W.
,
Winters
,
W.
,
Holden
,
T. M.
,
Hosbons
,
R. R.
, and
MacEwen
,
S. R.
,
1991
, “
Prediction and Measurement of Residual Plastic Strain Distributions in Gas Tungsten Arc Welding
,”
Weld. J. (Miami)
,
70
(
9
), pp.
245s–260s
245s–260s
.
29.
Brown
,
S. B.
, and
Song
,
H.
,
1992
, “
Implications of Three-Dimensional Numerical Simulations of Welding of Large Structures
,”
Weld. J. (Miami)
,
71
(
2
), pp.
55s–62s
55s–62s
.
30.
Taljat
,
B.
,
Radhakrishnan
,
B.
, and
Zacharia
,
T.
,
1998
, “
Numerical Analysis of GTA Welding Process With Emphasis on Post-Solidification Phase Transformation Effects on Residual Stresses
,”
Materials Science and Engineering
,
A246
, pp.
45
54
.
31.
Bonifaz
,
E. A.
,
2000
, “
Finite Element Analysis of Heat Flow in Single-Pass Arc Welds
,”
Weld. J. (Miami)
,
79
(
5
), pp.
121s–125
121s–125
.
32.
Zhang
,
Y. M.
, and
Kovacevic
,
R.
,
1998
, “
Neurofuzzy Model Based Control of Weld Fusion Zone Geometry
,”
IEEE Trans. Fuzzy Syst.
,
6
(
3
), pp.
389
401
.
You do not currently have access to this content.