In order to achieve reliable but cost-effective crash simulations of stamped parts, sheet-forming process effects were incorporated in simulations using the ideal forming theory mixed with the three-dimensional hybrid membrane and shell method, while the subsequent crash simulations were carried out using a dynamic explicit finite element code. Example solutions performed for forming and crash simulations of I- and S-shaped rails verified that the proposed approach is cost effective without sacrificing accuracy. The method required a significantly small amount of additional computation time, less than 3% for the specific examples, to incorporate sheet-forming effects into crash simulations. As for the constitutive equation, the combined isotropic-kinematic hardening law and the nonquadratic anisotropic yield stress potential as well as its conjugate strain-rate potential were used to describe the anisotropy of AA6111-T4 aluminum alloy sheets.

1.
Hisao, M., Hirohito, S., Masatoshi, I., and Yasuhiro, M., 1999, “Crash Simulations Considered Influence of Stamping,” AMERI-PAM’99, Stamping 3.
2.
Kellicut, A., Cowell, B., Kavikondala, K., Dutton, T., Iregbu, S., and Sturt, R., 1999, “Application of the Results of Forming Simulation in Crash Models,” NUMISHEET’99 Numerical Simulation of 3-D Sheet Metal Forming Processes, J. C. Gelin and P. Picart, Eds., pp. 509–516.
3.
Lee, M.-G., Han, C.-S., Chung, K., Youn, J. R., and Kang, T. J., 2003, “The Influence of Back Stresses in Parts Forming on Crashworthiness,” JMPT (accepted).
4.
Lee
,
S. H.
,
Han
,
C.-S.
,
Oh
,
S. I.
, and
Wriggers
,
P.
,
2001
, “
Comparative Crash Simulations Incorporating the Results of Sheet Forming Analyses
,”
Eng. Comput.
,
18
, pp.
744
758
.
5.
Richmond, O., and Devenpeck, M. L., 1962, “A Die Profile for Maximum Efficiency in Strip Drawing,” Proc. of U.S. National Congress of Applied Mechanics 2, p. 1053.
6.
Richmond, O., Morrison, H. L., and Devenpeck, M. L., 1978, “Ideal Metal Forming. Metal Forming Plasticity,” In: H. Lippmann, et al., eds., Proc. Conf. of IUTAM, Tutzing, Germany, 223.
7.
Chung
,
K.
, and
Richmond
,
O.
,
1992
, “
Ideal Forming, Part I. Homogeneous Deformation With Minimum Plastic Work
,”
Int. J. Mech. Sci.
,
34
, pp.
575
591
.
8.
Chung
,
K.
, and
Richmond
,
O.
,
1992
, “
Ideal Forming, Part II: Sheet Forming With Optimum Deformation
,”
Int. J. Mech. Sci.
,
34
, pp.
617
633
.
9.
Chung
,
K.
,
Yoon
,
J. W.
, and
Richmond
,
O.
,
2000
, “
Ideal Sheet Forming With Frictional Constraints
,”
Int. J. Plast.
,
16
, pp.
595
610
.
10.
Chung
,
K.
, and
Richmond
,
O.
,
1993
, “
A Deformation Theory of Plasticity Based on Minimum Work Paths
,”
Int. J. Plast.
,
9
, pp.
907
920
.
11.
Chung
,
K.
, and
Richmond
,
O.
,
1994
, “
Mechanics of Ideal Forming
,”
ASME J. Appl. Mech.
,
61
, pp.
176
181
.
12.
Pourboghrat
,
F.
,
Chung
,
K.
, and
Richmond
,
O.
,
1998
, “
A Hybrid Membrane/Shell Method for Rapid Estimation of Springback in Anisotropic Sheet Metals
,”
ASME J. Appl. Mech.
,
65
, pp.
671
684
.
13.
Yoon
,
J. W.
,
Pourboghrat
,
F.
,
Chung
,
K.
, and
Yang
,
D. Y.
,
2002
, “
Springback Prediction for Sheet Metal Forming Process Using a 3D Hybrid Membrane/Shell Method
,”
Int. J. Mech. Sci.
,
44
, pp.
2133
2153
.
14.
Chung
,
K.
,
Barlat
,
F.
,
Brem
,
J. C.
,
Lege
,
D. J.
, and
Richmond
,
O.
,
1997
, “
Blank Shape Design for a Planar Anisotropic Sheet Based on Ideal Forming Design Theory and FEM Analysis
,”
Int. J. Mech. Sci.
,
39
, pp.
105
120
.
15.
Barlat
,
F.
,
Chung
,
K.
, and
Richmond
,
O.
,
1993
, “
Strain Potential for Metals and Its Application to Minimum Plastic Work Path Calculations
,”
Int. J. Plast.
,
9
, pp.
51
63
.
16.
Barlat
,
F.
,
Lege
,
D. J.
, and
Brem
,
J. C.
,
1991
, “
A Six-Component Yield Function for Anisotropic Metals
,”
Int. J. Plast.
,
7
, pp.
693
712
.
17.
Chaboche
,
J. L.
,
1986
, “
Time Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
, pp.
149
188
.
18.
Chung
,
K.
,
Lee
,
M.-G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
, and
Barlat
,
F.
,
2004
, “
Spring-Back Evaluation of Automotive Sheets Based on Combined Isotropic-Kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions, Part I: Theory and Formulation
,”
Int. J. Plast.
, (accepted).
19.
Hibbitt, Karlson, and Sorensen, 2001, ABAQUS User’s Manual, Version 6.2.6, Rhode Island, USA.
20.
Chung, K., 1984, “The Analysis of Anistropic Hardening in Finite Deformation Plasticity,” Ph.D. thesis, Stanford University, Stanford.
21.
Simo, J. C., and Hughes, T. J. R., 1997, Computational Inelasticity, Springer-Verlag, N. Y.
22.
Worswick, M. J., Finn, M. J., and Galbraith, C., 1999, “Influence of Yield Criteria on the Prediction of Formability During Stretch Flanging Forming,” A. S. Khan, ed., Proc. Plasticity’99, Cancun, Mexico, pp. 441–444.
23.
Hosford, W. F., 2003, “The Effects of Yield Criteria in Analyses of Metal Forming,” A. S. Khan, R. Kazmi, and J. Zhou, eds., Proc. Plasticity’03, Maryland, USA pp. 175–177.
24.
Savoie, J., Szabo, L., Wu, P., and Nardini, D., 2003, “Implementation of Barlat 1996 Yield Function in Finite Element Simulation of Sheet Forming,” A. S. Khan, R. Kazmi, and J. Zhou, eds., Proc. Plasticity’03, Maryland, USA, pp. 196–198.
25.
Kim
,
S.-H.
, and
Huh
,
H.
,
2003
, “
Inverse Finite Element Analysis of S-rail Forming With a Direct Mesh Mapping Method for Crash Analysis Considering Forming Effects
,”
Key Eng. Mater.
,
233–236
, pp.
335
340
.
26.
Tin
,
T. C.
,
1988
, “
Determination of C1/2, C−1/2 and more general isotropic tensor function of C
,”
J. Elast.
,
15
, pp.
319
323
.
27.
Lee
,
M.-G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
,
Wagoner
,
R. H.
, and
Chung
,
K.
,
2004
, “
Spring-Back Evaluation of Automotive Sheets Based on Combined Isotropic-Kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions, Part II: Characterization of Material Properties
,”
Int. J. Plast.
, (accepted).
28.
Lee, J. K., Kinzel, G. L., and Wagoner, R. H., eds., 1996, NUMISHEET’96 Numerical Simulation of 3-D Sheet Metal Forming Processes–Verification of Simulation with Experiment, Michigan, USA.
You do not currently have access to this content.