Screw fastenings account for a quarter of all assembly operations and automation of the process is highly desirable. This paper presents a novel strategy for monitoring this manufacturing process, focusing on the insertion of self-tapping screws. An artificial neural network (ANN), using “Torque-versus-Insertion-Depth” signature signals as input, is designed to distinguish between successful and failed insertions. The ANN is first tested using simulation data from an analytical model for screw insertions, and then validated using experimental torque signals obtained from an electric screwdriver. The results demonstrate that ANNs can effectively monitor the screw fastening process and cope with a wide range of insertion cases interpolating for unseen insertion signals.

1.
Nevis
,
J. L.
, and
Whitney
,
D. E.
,
1978
, “
Computer-Controlled Assembly
,”
Sci. Am.
,
238
, No.
2
, pp.
62
74
.
2.
Smith, S. K., 1980, “Use of Microprocessor in the Control And Monitoring of Air Tools while Tightening Thread Fasteners,” Eaton Corporation, Autofact West, Proc. Society of Manufacturing Engineers, Dearborn, MI, 2.
3.
Tsujimura
,
T.
, and
Yabuta
,
T.
,
1991
, “
Adaptive Force Control of Screwdriving with a Positioning-controlled Manipulator
,”
Rob. Auton. Syst.
,
7
, pp.
57
65
.
4.
Matsumura, M., Itou, S., Hibi, H. and Hottori, M., 1995, “Tightening Torque Estimation of a Screw Tightening Robot,” Proc. IEEE International Conference on Robotics and Automation, IEEE, Nagoya, Japan, 1–3, pp. 2108–2112.
5.
Althoefer
,
K.
,
Seneviratne
,
L. D.
, and
Shields
,
R.
,
2000
, “
Mechatronic Strategies for Torque Control of Electric Powered Screwdrivers,” Proc. Institution of Mechanical Engineers, Part C
,
J. Mech. Eng. Sci.
,
214
, No.
12
, pp.
1485
1501
.
6.
Ogiso, K., and Watanabe, M., 1982, “Increase of Reliability in Screw Tightening,” Proc. 4th International Conference on Assembly Automation, Tokyo, Japan.
7.
Dhayagude
,
N.
,
Gao
,
Z.
, and
Mrad
,
F.
,
1996
, “
Fuzzy Logic Control Of Automated Screw Fastening
,”
Rob. Comput.-Integr. Manufact.
,
12
, No.
3
, pp.
235
242
.
8.
Ngemoh, F. A., 1997, “Modelling the Automated Screw Insertion Process,” Ph.D. thesis, King’s College, University of London, UK.
9.
Seneviratne
,
L. D.
,
Ngemoh
,
F. A.
,
Earls
,
S. W. E.
, and
Althoefer
,
K.
,
2001
, “
Theoretical Modelling of the Self-Tapping Screw Fastening Process,” Proc. Institution of Mechanical Engineers
,
J. Mech. Eng. Sci.
,
215
, No.
2
, pp.
135
154
.
10.
Ngemoh, F. A., Seneviratne, L. D., and Earles, S. W. E., 1992, “Theoretical Modeling of Screw Tightening Operations,” Proc. ASME European Joint Conference on Systems, Design and Analysis, London, UK, 1, pp. 189–195.
11.
Seneviratne
,
L. D.
,
Ngemoh
,
F. A.
, and
Earles
,
S. W. E.
,
2000
, “
An Experimental Investigation of Torque Signature Signals for Self-tapping Screws,” Proc. Institution of Mechanical Engineers, Part C
,
J. Mech. Eng. Sci.
,
214
, No.
2
, pp.
399
410
.
12.
Bishop, C. M., 1995, Neural Networks for Pattern Recognition, Clarendon, Oxford, UK.
13.
Bruzzone
,
L.
, and
Prieto
,
D. F.
,
1998
, “
Supervised Training for Radial Basis Function Neural Networks
,”
Electron. Lett.
,
34
, No.
11
, pp.
1115
1116
.
14.
Lara, B., Althoefer, K., and Seneviratne, L. D., 2000, “Artificial Neural Networks for Screw Insertions Classification,” Proc. IEEE Robotics and Automation Conference (ICRA’2000), San Francisco, CA, pp. 1912–1917.
15.
Lara, B., Althoefer, K., and Seneviratne, L. D., 1999, “Use of Artificial Neural Networks for the Monitoring of Screw Insertions,” Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’99), Kyongiu, Korea, 1, pp. 579–584.
16.
Lara Guzman, B., 2000, “Intelligent Monitoring of Screw Insertions,” Ph.D. thesis, King’s College, University of London, UK.
17.
Zell, A., Mamier, G., Vogt, M., Mache, N., Hu¨bner, R., Do¨ring, S., Herrmann, K.-U., Soyez, T., Schmalzl, M., Sommer, T., Hatzigeorgiou, A., Posselt, D., Schreiner, T., Kett, B., Clemente, G., and Wieland, J., 1995, “SNNS. Stuttgart Neural Network Simulator,” User manual, Ver. 4.1., Report No. 6/95, University of Stuttgart, Germany.
18.
Klingajay, M., Seneviratne, L. D., and Althoefer, K., 2003, “Identification of Threaded Fastening Parameters Using the Newton Raphson Method,” Proc. IEEE/RSJ Intl. Conference on Intelligent Robots and Systems (IROS’03), Las Vegas, Nevada, pp. 2055–2060.
You do not currently have access to this content.