This paper proposes an analytical approach to detect depth-of-cut variations based on the cutting-force shape characteristics in end milling. Cutting forces of a single-flute end mill are analyzed and classified into three types according to their shape characteristics. Cutting forces of a multiple-flute end mill are then classified by considering both the cutting types of the corresponding single-flute end mill and the degree of overlap of successive flutes in the cut. Force indices are extracted from the cutting forces and depth-of-cut variations are detected based on the changes of the force shape characteristics via the force indices in an end-milling process. The detection methodology is validated through cutting experiments.

1.
Tonshoff
,
H. K.
,
Wolfsberg
,
J. P.
,
Kals
,
H. J. J.
,
Konig
,
W.
, and
Luttervelt
,
C. A.
, 1988, “
Developments and Trends in Monitoring and Control of Machining Process
,”
CIRP Ann.
0007-8506,
37
(
2
), pp.
611
622
.
2.
Altintas
,
Y.
, and
Yellowley
,
I.
, 1989, “
In-Process Detection of Tool Failure in Milling Using Cutting Force Models
,”
ASME J. Eng. Ind.
0022-0817,
111
(
2
), pp.
149
157
.
3.
DeVor
,
R. E.
,
Kapoor
,
S. G.
,
Hibner
,
M.
,
Kim
,
D.
,
Reutzel
,
K.
, and
Kline
,
W. A.
, 1996, “
A Process Model-Based Approach for Machine Tool and Cutting Process Diagnostics
,”
Proc. of the Japan-USA Symp. on Flexible Automation
, Boston, Massachusetts, pp.
1007
1017
.
4.
Dzombak
,
I.
, and
Kline
,
W.
, 1989, “
System Design for In-Process Tool Monitors
,”
SME Technical Paper
, MS89-457.
5.
Tarn
,
J. H.
, and
Tomizuka
,
M.
, 1989, “
On-Line Monitoring of Tool and Cutting Conditions in Milling
,”
ASME J. Eng. Ind.
0022-0817,
111
(
3
), pp.
206
212
.
6.
Jemielniak
,
K.
, 1999, “
Commercial Tool Condition Monitoring Systems
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
15
, pp.
711
721
.
7.
Altintas
,
Y.
, and
Yellowley
,
I.
, 1987, “
The Identification of Radial Width and Axial Depth of Cut in Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
27
(
3
), pp.
367
381
.
8.
Choi
,
J. G.
, and
Yang
,
M. Y.
, 1999, “
In-Process Prediction of Cutting Depths in End Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
(
5
), pp.
705
721
.
9.
Yang
,
L. Q.
,
Zhu
,
R.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Kline
,
W. A.
, 2000, “
Identification of Stock Size Variation and its Application to Process Monitoring in End Milling
,”
Proc. of the Japan-USA Symp. on Flexible Automation
, Ann Arbor, Michigan, Paper No. 2000JUSFA-13212, pp.
1
8
.
10.
Yang
,
L. Q.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, 2002, “
A Model-Based Methodology for Detection of Depth of Cut Variations in End Milling
,”
Proc. of the Japan-USA Symp. on Flexible Automation
, Hiroshima, Japan, Vol.
1
, Chap. B2, pp.
1
8
.
11.
Sabberwal
,
A. J. P.
, and
Koenigsberger
,
F.
, 1960, “
Chip Section and Cutting Force During the Milling Operation
,”
CIRP Ann.
0007-8506,
9
, pp.
197
203
.
12.
Tlusty
,
J.
, and
MacNeil
,
P.
, 1975, “
Dynamics of the Cutting Forces in End Milling
,”
CIRP Ann.
0007-8506,
28
(
1
), pp.
253
265
.
13.
Winter
,
D. A.
, 1990,
Biomechanics and Motor Control of Human Movement
,
Wiley
, New York.
14.
Hitz
,
T.
, 1999, “
The Digitally Sampled System: How Fast Is Fast Enough
,” http://www.sensorsmag.com/articles/0299/0299̱da/index.htmhttp://www.sensorsmag.com/articles/0299/0299̱da/index.htm, pp.
1
9
.
You do not currently have access to this content.