This work combines experimental studies with finite element simulations to develop a reliable numerical model for the simulation of shearing process in aluminum alloys. The critical concern with respect to product quality in this important process is burr formation. Numerical simulations are aimed at understanding the role of process variables on burr formation and for recommending process design parameters. The commercial code ABAQUS-Explicit with the arbitrary Lagrangian-Eulerian kinematic description is used in this study for numerical simulations. An elastic-plastic constitutive model with experimentally validated damage models are incorporated through the user subroutine VUMAT in ABAQUS, for modeling deformation and ductile fracture in the material. Macroscopic experiments with microscopic observations are conducted to characterize the material and to calibrate the constitutive and damage models. Parametric study is done to probe the effect of process parameters and finally, a genetic algorithm (GA) based design method is used to determine process parameters for minimum burr formation.

1.
Chang
,
T. M.
, and
Swift
,
H. W.
, 1950, “
Shearing of Metal Bars
,”
J. Inst. Met.
0020-2975,
78
, pp.
119
146
.
2.
Johnson
,
W.
, and
Slater
,
R. A.
, 1967, “
Survey of Slow and Fast Blanking of Metals at Ambient and High Temperatures
,”
Proc. Int. Conf.
“Manufacturing Technology,” CIRP-ASTME, pp.
825
851
.
3.
Johnson
,
W.
,
Ghosh
,
S. K.
, and
Reid
,
S. R.
, 1980, “
Piercing and Hole-Flanging of Sheet Metals: A Survey
,”
Mem. Sci. Rev. Metall.
0025-9128,
77
, pp.
585
606
.
4.
Atkins
,
G.
, 1980, “
On Cropping and Related Process
,”
Int. J. Mech. Sci.
0020-7403,
22
(
4
), pp.
215
231
.
5.
Atkins
,
G.
, 1990, “
On the Mechanics of Guillotining Ductile Metals
,”
J. Mater. Process. Technol.
0924-0136,
24
, pp.
245
257
.
6.
Atkins
,
G.
, 1981, “
Surface Produced by Guillotining
,”
Philos. Mag. A
0141-8610,
43
, pp.
627
641
.
7.
Zhou
,
Q.
, and
Wierzbicki
,
T.
, 1996, “
A Tension Zone Model of Blanking and Tearing of Ductile Metal Plate
,”
Int. J. Mech. Sci.
0020-7403,
38
(
3
), pp.
303
324
.
8.
Li
,
M.
, 2000, “
An Experimental Investigation on Cut Surface and Burr in Trimming Aluminum Autobody Sheet
,”
Int. J. Mech. Sci.
0020-7403,
42
(
5
), pp.
889
906
.
9.
Li
,
M.
, 2000, “
Micromechanisms of Deformation and Fracture in Shearing Aluminum Alloy Sheet
,”
Int. J. Mech. Sci.
0020-7403,
42
(
5
), pp.
907
923
.
10.
Li
,
M.
, and
Fata
,
G.
, 1998, “
Trimmed Aluminum Sheet
,” U. S. Patent 5,820,999.
11.
Li
,
M.
, and
Fata
,
G.
, 2002, “
Method and Apparatus for Trimming Aluminum Sheet
,” U. S. Patent Application Publication US 2002∕0017173 Al, Feb. 14.
12.
Taupin
,
E.
,
Breitling
,
J.
,
Wu
,
W.
, and
Altan
,
T.
, 1996, “
Material Fracture and Burr Formation in Blanking Results of FEM Simulations and Comparison With Experiments
,”
J. Mater. Process. Technol.
0924-0136,
59
, pp.
68
78
.
13.
McClintock
,
F. A.
, 1968, “
Criteria for Ductile Fracture by the Growth of Holes Subjected to Multiaxial Stress States
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
35
, pp.
363
371
.
14.
Hambli
,
R.
, 2001, “
FEM Fracture Prediction During Sheet Metal Blanking Processes
,”
Eng. Fract. Mech.
0013-7944,
68
, pp.
365
378
.
15.
Hambli
,
R.
, 2002, “
Prediction of Burr Height Formation in Blanking Using Neural Networks
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
2089
2102
.
16.
Miguel
, Jr,
V.
, and
Bressan
,
J. D.
, 2002, “
A Computational Approach to Blanking Processes
,”
J. Mater. Process. Technol.
0924-0136,
125–126
, pp.
206
212
.
17.
Lemaitre
,
J.
, 1985, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
J. Eng. Mater. Technol.
0094-4289,
107
, pp.
83
89
.
18.
Cockroft
,
M. G.
, and
Latham
,
D. J.
, 1968, “
Ductility and Workability of Metals
,”
J. Inst. Met.
0020-2975,
96
, pp.
33
39
.
19.
Fang
,
G.
,
Zeng
,
P.
, and
Lou
,
L.
, 2002, “
Finite Element Simulation of the Effect of Clearance on the Forming Quality in the Blanking Process
,”
J. Mater. Process. Technol.
0924-0136,
122
, pp.
249
254
.
20.
MacCormack
,
C.
, and
Monaghan
,
J.
, 2001, “
Failure Analysis of Cold Forging Dies Using FEA
,”
J. Mater. Process. Technol.
0924-0136,
117
, pp.
209
215
.
21.
Brokken
,
D.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
, 2000, “
Predicting the Shape of Blanked Products: A FEM Approach
,”
J. Mater. Process. Technol.
0924-0136,
103
, pp.
51
56
.
22.
Rice
,
J. R.
, and
Tracey
,
D. M.
, 19969, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
0022-5096,
17
, pp.
201
217
.
23.
Brokken
,
D.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
, 2000, “
Discrete Ductile Fracture Modeling for the Metal Blanking Process
,”
Comput. Mech.
0178-7675,
26
, pp.
104
114
.
24.
Goijaerts
,
A. M.
,
Govaert
,
L. E.
, and
Baaijens
,
F. P. T.
, 2001, “
Evaluation of Ductile Fracture Models for Different Metals in Blanking
,”
J. Mater. Process. Technol.
0924-0136,
110
, pp.
312
323
.
25.
Klingenberg
,
W.
, and
Singh
,
U. P.
, 2003, “
FE Simulation of the Punching Process Using In-Process Characterization of Mild Steel
,”
J. Mater. Process. Technol.
0924-0136,
134
, pp.
296
302
.
26.
Tvergaard
,
V.
, 1980, “
Material Failure by Void Growth
,”
Adv. Appl. Mech.
0065-2156,
27
, pp.
83
147
.
27.
Aravas
,
N.
, 1987, “
On the Numerical Integration of Class of Pressure-Dependent Plasticity Models
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
, pp.
1395
1416
.
28.
Wisselink
,
H. H.
, and
Huetink
,
J.
, 1999, “
Simulation of Slitting Process With FEM
,”
Proceedings of the SheMet
.
29.
Oyane
,
M.
,
Sato
,
T.
,
Okimoto
,
K.
, and
Shima
,
S.
, 1980, “
Criteria for Ductile Fracture and Their Applications
,”
J. Mech. Work. Technol.
0378-3804,
4
, pp.
65
81
.
30.
Oyane
,
M.
, 1972, “
Criteria of Ductile Fracture Strain
,”
J. Mech. Eng.
0577-6686,
15
(
90
), pp.
1507
1513
.
31.
Kubli
,
W.
, and
Reissner
,
J.
, 1995, “
Optimization of Sheet-Metal Forming Processes Using the Special-Purpose Program Auto Form
,”
J. Mater. Process. Technol.
0924-0136,
50
, pp.
292
305
.
32.
Nicholson
,
T. A. J.
, 1971,
Optimization in Industry
, Vols.
1
and
2
,
Longman
, London.
33.
1987, “
New Methods in Optimization and Their Industrial Uses
,” edited by
Pinot
,
J. P.
, Proc. Symp.; Pau and Paris.
34.
Yang
,
J. B.
,
Jeon
,
B. H.
, and
Oh
,
S. I.
, 2001, “
Design Sensitivity Analysis and Optimization of the Hydroforming Process
,”
J. Mater. Process. Technol.
0924-0136,
113
, pp.
666
672
.
35.
Wadi
,
I.
, and
Balendra
,
R.
, 1999, “
Intelligent Approach to Monitor and Control the Blanking Process
,”
Adv. Eng. Software
0965-9978,
30
, pp.
85
92
.
36.
Wadi
,
I.
, and
Balendra
,
R.
, 1999, “
Using Neural Networks to Model Blanking Process
,”
J. Mater. Process. Technol.
0924-0136,
91
, pp.
52
65
.
37.
Roy
,
S.
,
Ghosh
,
S.
, and
Shivpuri
,
R.
, 1997, “
A New Approach to Optimal Design of Multi-Stage Metal Forming Processes by Micro Genetic Algorithms
,”
Int. J. Mach. Tools Manuf.
0890-6955,
37
(
1
), pp.
29
44
.
38.
Chung
,
J. S.
, and
Hwang
,
S. M.
, 1998, “
Application of a Genetic Algorithm to Process Optimal Design in Non-Isothermal Metal Forming
,”
J. Mater. Process. Technol.
0924-0136,
80–81
, pp.
136
143
.
39.
ABAQUS Version 6.2, User’s Manual, Hibitt Karlsson and Sorensen, Inc.
40.
Clift
,
S. E.
,
Hartley
,
P.
,
Sturgess
,
E. N.
, and
Rowe
,
G. W.
, 1990, “
Fracture Prediction in Plastic Deformation Processes
,”
Int. J. Mech. Sci.
0020-7403,
32
(
1
), pp.
1
12
.
41.
Li
,
M.
,
Ghosh
,
S.
,
Richmond
,
O.
,
Weiland
,
H.
, and
Rouns
,
T. N.
, 1999, “
Three Dimensional Characterization and Modeling of Particle Reinforced Metal Matrix Composites: Part 1 Quantitative Description of Microstructural Morphology
,”
Mater. Sci. Eng., A
0921-5093,
265
, pp.
153
173
.
42.
Weibel
,
E. R.
, 1980,
Stereological Methods: Theoretical foundation
Vol. 2,
Academic Press
, London.
43.
Khan
,
A. S.
,
, and
Huang
,
S.
, 1995,
Continuum Theory of Plasticity
,
Wiley
, New York.
You do not currently have access to this content.