A method for rapid computer numerically controlled (CNC) machining is being developed in an effort to automatically create functional prototypes and parts in a wide array of materials. The method uses a plurality of simple two-and-a-half-dimensional (212-D) toolpaths from various orientations about an axis of rotation in order to machine the entire surface of a part without refixturing. It is our goal to automatically create these toolpaths for machining and eliminate the complex planning traditionally associated with CNC machining. In this paper, we consider a problem that arises in automating this process—visibility to the surface of a model that is rotated about a fourth axis. Our approach involves slicing the computer-aided design (CAD) model orthogonal to the axis of rotation. The slice geometry is used to calculate two-dimensional visibility maps for the set of polygons on each slice plane. The visibility data provides critical information for determining the minimum number and orientation of 212-D toolpaths required to machine the entire surface of a part.

1.
Wang
,
F. C.
,
Marchetti
,
L.
, and
Wright
,
P. K.
, 1999, “
Rapid Prototyping Using Machining
,” SME Technical Paper, PE99-118.
2.
Frank
,
M. C.
,
Wysk
,
R. A.
, and
Joshi
,
S. B.
, 2003, “
Rapid Prototyping Using CNC Machining
,”
Proc. of ASME Design Engineering Technical Conf. and Computers and Information in Engineering Conf., Chicago
, IL,
ASME
, New York.
3.
Frank
,
M. C.
,
Joshi
,
S. B.
, and
Wysk
,
R. A.
, 2003, “
Rapid Prototyping as an Integrated Product/Process Development Tool: An Overview of Issues and Economics
,”
J. Chin. Inst. Eng.
0253-3839,
20
(
3
), pp.
239
245
.
4.
Chen
,
L. L.
, and
Woo
,
T. C.
, 1992, “
Computational Geometry on the Sphere With Application to Automated Machining
,”
Trans. ASME
0097-6822,
114
(
2
), pp.
288
295
.
5.
Gan
,
J. G.
,
Woo
,
T. C.
, and
Tang
,
K.
, 1994, “
Spherical Maps: Their Construction, Properties, and Approximation
,”
J. Mech. Des.
1050-0472,
116
(
2
), pp.
357
363
.
6.
Tang
,
K.
,
Woo
,
T. C.
, and
Gan
,
J.
, 1992, “
Maximum Intersection of Spherical Polygons and Workpiece Orientation for 4- and 5-Axis Machining
,”
J. Mech. Des.
1050-0472,
114
(
3
), pp.
477
485
.
7.
Chen
,
L.
,
Chou
,
S.
, and
Woo
,
T. C.
, 1993, “
Separating and Intersecting Spherical Polygons: Computing Machinability on Three-, Four-, and Five-Axis Numerically Controlled Machines
,”
ACM Trans. Graphics
0730-0301,
12
(
4
), pp.
305
326
.
8.
Suh
,
S. H.
, and
Kang
,
J. K.
, 1995, “
Process Planning for Multi-Axis NC Machining of Free Surfaces
,”
Int. J. Prod. Res.
0020-7543,
33
(
10
), pp.
2723
2738
.
9.
Joshi
,
S. B.
, and
Chang
,
T. C.
, 1988, “
Graph-Base Heuristic for Recognition of Machined Features From a 3-D Solid Model
,”
Comput.-Aided Des.
0010-4485,
20
(
2
), pp.
58
66
.
10.
Ferreira
,
J. C. E.
, and
Hinduja
,
S.
, 1990, “
Convex Hull-Based Feature Recognition Method for 2.5D Components
,”
Comput.-Aided Des.
0010-4485,
22
(
1
), pp.
41
49
.
11.
Vanderbrande
,
J. H.
, and
Requicha
,
A. A. G.
, 1993, “
Spatial Reasoning for the Automatic Recognition of Machinable Features in Solid Models
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
15
(
12
), pp.
1269
1285
.
12.
Balasubramanium
,
M.
,
Laxmiprasad
,
P.
,
Sarma
,
S.
, and
Shaikh
,
Z.
, 2000, “
Generating 5-Axis NC Roughing Paths Directly From a Tessellated Representation
,”
Comput.-Aided Des.
0010-4485,
32
(
4
), pp.
261
277
.
13.
Tseng
,
Y. J.
, and
Joshi
,
S. B.
, 1991, “
Determining Feasible Tool-Approach Directions for Machining Bezier Curves and Surfaces
,”
Comput.-Aided Des.
0010-4485,
23
(
5
), pp.
367
379
.
14.
Glaeser
,
G.
,
Wallner
,
J.
, and
Pottman
,
H.
, 1999, “
Collision Free 3-Axis Milling and Selection of Cutting Tools
,”
Comput.-Aided Des.
0010-4485,
31
(
3
), pp.
225
232
.
15.
Yang
,
D. C. H.
, and
Han
,
Z.
, 1999, “
Interference Detection and Optimal Tool Selection in 3-Axis NC Machining of Free-Form Surfaces
,”
Comput.-Aided Des.
0010-4485,
31
(
5
), pp.
303
315
.
16.
Suh
,
S. H.
,
Lee
,
J. J.
, and
Kim
,
S. K.
, 1998, “
Multiaxis Machining With Additional-Axis NC System: Theory and Development
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
14
(
12
), pp.
865
875
.
17.
Suh
,
S.
, and
Lee
,
J.
, 1998, “
Five Axis Part Machining With Three Axis CNC Machine and Indexing Table
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
(
1
), pp.
120
128
.
18.
Li
,
S.
, and
Jerard
,
R.
, 1994, “
5-Axis Machining of Sculptured Surfaces With a Flat-End Cutter
,”
Comput.-Aided Des.
0010-4485,
26
(
3
), pp.
165
178
.
19.
Xu
,
X. J.
,
Bradley
,
C.
,
Zhang
,
Y. F.
,
Loh
,
H. T.
, and
Wong
,
Y. S.
, 2002, “
Tool-Path Generation for Five-Axis Machining of Free-Form Surfaces Based on Accessibility Analysis
,”
Int. J. Prod. Res.
0020-7543,
40
(
14
), pp.
3253
3274
.
20.
Balasubramanium
,
M.
,
Sarma
,
S.
, and
Marciniak
,
K.
, 2003, “
Collision-Free Finishing Toolpaths From Visibility Data
,”
Comput.-Aided Des.
0010-4485,
35
(
4
), pp.
359
374
.
21.
Lee
,
D. T.
, 1983, “
Visibility of a Simple Polygon
,”
Comput. Vis. Graph. Image Process.
0734-189X,
22
(
2
), pp.
207
221
.
22.
Shin
,
S. Y.
, and
Woo
,
T. C.
, 1989, “
An Optimal Algorithm for Finding all Visible Edges in a Simple Polygon
,”
IEEE J. Rob. Autom.
0882-4967,
5
(
2
), pp.
202
207
.
23.
Ghosh
,
S. B.
, and
Mount
,
D. M.
, 1991, “
An Output-Sensitive Algorithm for Computing Visibility Graphs
,”
SIAM J. Comput.
0097-5397,
20
(
5
), pp.
888
910
.
24.
Gewali
,
L. P.
, and
Ntafos
,
S.
, 1998, “
Watchman Routes in the Presence of a Pair of Convex Polygons
,”
Inf. Sci. (N.Y.)
0020-0255,
105
(
1–4
), pp.
123
149
.
25.
Everett
,
H.
,
Hurtado
,
F.
, and
Noy
,
M.
, 1999, “
Stabbing Information of a Simple Polygon
,”
Discrete Appl. Math.
0166-218X,
91
(
1–3
), pp.
67
82
.
26.
Kapoor
,
S.
, and
Maheshwari
,
S. N.
, 2000, “
Efficiently Constructing the Visibility Graph of a Simple Polygon With Obstacles
,”
SIAM J. Comput.
0097-5397,
30
(
3
), pp.
847
871
.
27.
Ntafos
,
S.
, and
Gewali
,
L.
, 1994, “
External Watchman Routes
,”
Visual Comput.
0178-2789,
10
(
8
), pp.
474
483
.
28.
Laurentini
,
A.
, 1999, “
Guarding the Walls of an Art Gallery
,”
Visual Comput.
0178-2789,
15
(
6
), pp.
265
278
.
29.
O’Rourke
,
J.
, 1987,
Art Gallery Theorems and Algorithms
,
Oxford University Press
, New York.
30.
Peshkin
,
M. A.
, and
Sanderson
,
A. C.
, 1986, “
Reachable Grasps on a Polygon: The Convex Rope Algorithm
,”
IEEE J. Rob. Autom.
0882-4967,
RA-2
(
1
), pp.
53
58
.
31.
Lee
,
D. T.
, and
Preparata
,
F. P.
, 1984, “
Euclidean Shortest Paths in the Presence of Rectilinear Barriers
,”
Networks
,
14
(
3
), pp.
393
410
.
32.
Guibas
,
L. J.
,
Hershberger
,
J.
,
Leven
,
D.
,
Sharir
,
M.
, and
Tarjan
,
R. E.
, 1987, “
Linear Time Algorithms for Visibility and Shortest Path Problems Inside Triangulated Simple Polygons
,”
Algorithmica
0178-4617,
2
(
2
), pp.
209
233
.
33.
Stewart
,
J. A.
, 1999, “
Computing Visibility From Folded Surfaces
,”
Comput. Graph.
0097-8930,
23
(
5
), pp.
693
702
.
34.
Toussaint
,
G.
, 1991, “
Efficient Triangulation of Simple Polygons
,”
Visual Comput.
0178-2789,
7
(
5–6
), pp.
280
295
.
35.
Held
,
M.
, 1998,
Efficient and Reliable Triangulation of Polygons
, Computer Graphics International,
Hannover
, Germany, pp.
633
643
.
36.
Chvátal
,
V.
, 1979, “
A Greedy Heuristic for the Set-Covering Problem
,”
Math. Op. Res.
0364-765X,
4
(
3
), pp.
233
235
.
You do not currently have access to this content.