Real time monitoring, diagnosis, and control of numerous manufacturing processes is of critical importance in reducing operation costs, improving product quality, and shortening response time. Current sensors used in manufacturing are normally unable to provide measurements with desired spatial and temporal resolution at critical locations in metal tooling structures that operate in hostile environments (e.g., elevated temperatures and severe strains). Microsensors are expected to offer tremendous benefits for real time sensing in manufacturing processes. Rapid tooling, a layered manufacturing process, could allow microsensors to be placed at any critical location in metal tooling structures. However, a viable approach is needed to effectively integrate microsensors into metal structures during the process. In this study, a novel batch production of metal embedded microsensor units was realized by transferring thin-film sensors from silicon wafers directly into nickel substrates through standard microfabrication and electroplating techniques. Ultrasonic metal welding (USMW) was studied to obtain optimized process parameters and then used to integrate nickel embedded thin-film thermocouple (TFTC) units into copper workpieces. The embedded TFTCs successfully survived the welding tests, validating that USMW is a viable method to integrate microsensors to metallic tool materials. Moreover, the embedded microsensors were also able to measure the transient temperature in situ at 50μm directly beneath the welding interface during welding. The transient temperatures measured by the metal embedded TFTCs provide strong evidence that the heat generation is not critical for weld formation during USMW. Metal embedded microsensors yield great potential to improve fundamental understanding of numerous manufacturing processes by providing in situ sensing data with high spatial and temporal resolution at critical locations.

1.
Li
,
X. C.
, and
Prinz
,
F.
, 2003, “
Metal Embedded Fiber Optic Sensors for Layered Manufacturing Process Monitoring
,”
J. Manuf. Sci. Eng.
1087-1357,
125
(
3
), pp.
577
585
.
2.
Li
,
X. C.
,
Tang
,
W.
, and
Golnas
,
T.
, 2004, “
Embedding and Characterization of Fiber Optic and Thin Film Sensors in Metallic Structures
,”
Sens. Rev.
0260-2288,
SR24
(
4
), pp.
370
377
.
3.
Li
,
X. C.
,
Golnas
,
A.
, and
Prinz
,
F.
, 2000, “
Shape Deposition Manufacturing of Smart Metallic Structures With Embedded Sensors
,”
Proc. SPIE
0277-786X,
3986
, pp.
160
171
.
4.
Lei
,
J. F.
, and
Will
,
H. A.
, 1998, “
Thin-Film Thermocouples and Strain-Gauge Technologies for Engine Applications
,”
Sens. Actuators, A
0924-4247
65
, pp.
187
193
.
5.
Grant
,
H. P.
, and
Przybyseweski
,
J. S.
, 1977, “
Thin Film Temperature Sensors
,”
J. Eng. Power
0022-0825,
99
, p.
497
.
6.
Kinard
,
J. R.
,
Huang
,
D. X.
, and
Novotny
,
D. B.
, 1995, “
Performance of Multilayer Thin-Film Multijunction Thermal Convertors
,”
IEEE Trans. Instrum. Meas.
0018-9456,
44
, pp.
383
386
.
7.
Kreider
,
K. G.
, and
DiMeo
,
F.
, 1998, “
Platinum/Palladium Thin-Film Thermocouples for Temperature Measurements on Silicon Wafers
,”
Sens. Actuators, A
0924-4247,
69
, pp.
46
52
.
8.
Rajanna
,
K.
,
Mohan
,
S.
,
Nayak
,
M.
,
Gunasekaran
,
N.
, and
Muthunayagam
,
A. E.
, 1993, “
Pressure Transducer with Au–Ni Thin Film Strain Gauges
,”
IEEE Trans. Electron Devices
0018-9383,
40
, pp.
521
524
.
9.
Norton
,
H. N.
, 1989,
Handbook of Transducers
,
Prentice–Hall
,
Englewood Cliffs, NJ
, pp.
178
.
10.
Nayak
,
M. M.
,
Gunasekaran
,
N.
,
Muthunayagam
,
A. E.
,
Rajanna
,
K.
, and
Mohan
,
S.
, 1993, “
Diaphragm-Type Sputtered Platinum Thin Film Strain Gauge Pressure Transducer
,”
Meas. Sci. Technol.
0957-0233,
4
, pp.
1319
1322
.
11.
Perino
,
P. R.
, 1965, “
Thin Film Strain Gauge Transducers
,”
Instrum. Control Syst.
0020-4404,
38
, pp.
119
.
12.
Rajanna
,
K.
,
Mohan
,
S.
, and
Gopal
,
E. S. R.
, 1989, “
Thin Film Strain Gauges—An Overview
,”
Indian J. Pure Appl. Phys.
0019-5596,
27
, pp.
453
460
.
13.
Stephen
,
J. R.
,
Rajanna
,
K.
,
Dhar
,
V.
,
Kumar
,
K. G. K.
, and
Nagabushanam
,
S.
, 2004, “
Thin-Film Strain Gauge Sensors for Ion Thrust Measurement
,”
IEEE Sens. J.
1530-437X,
4
, pp.
373
377
.
14.
Cheng
,
X.
,
Choi
,
H. S.
,
Schwieso
,
P.
,
Datta
,
A.
, and
Li
,
X.
, 2005, “
Micro Thin Film Sensor Embedded in Metal Structures for In-situ Process Monitoring During Ultrasonic Welding
,”
Trans. NAMRI/SME
1047-3025,
33
, pp.
267
272
.
15.
Datta
,
A.
,
Choi
,
H.
,
Cheng
,
X.
, and
Li
,
X.
, 2005, “
A Novel Microfabrication Technique for Batch Production of Metal Embedded Micro Thin Film Sensors for Applications in Hostile Environments
,”
Electrochem. Solid-State Lett.
1099-0062,
11
(
6
), pp.
H94
H96
.
16.
Choi
,
H.
,
Datta
,
A.
,
Cheng
,
X.
, and
Li
,
X.
, 2006, “
Microfabrication and Characterization of Embedded Thin Film Thermomechanical Sensors on Metal Substrates for Application in Hostile Manufacturing Environment
,”
IEEE/ASME Journal of MEMS
,
15
(
2
), pp.
322
329
.
17.
Martin
,
L. C.
, and
Holanda
,
R.
, 1994, “
Applications of Thin Film Thermocouples for Surface Temperatue Measurement
,” NASA TM-106714, NASA, Washington, D.C.
18.
Lei
,
J. F.
,
Martin
,
L. C.
, and
Will
,
H. A.
, 1997, “
Advances in Thin Film Sensor Technologies for Engine Applications
,” NASA TM-107418, NASA, Washington, D.C.
19.
Martin
,
L. C.
,
Fralick
,
G. C.
, and
Taylor
,
K. F.
, 1999, “
Advances in Thin Film Thermocouple Durability Under High Temperature and Pressure Testing Conditions
,” NASA TM-1999-208812, NASA, Washington, D.C.
20.
Martin
,
L. C.
,
Wrbanek
,
J. D.
, and
Fralick
,
G. C.
, 2001, “
Thin Film Sensors for Surface Measurements
,” NASA TM-2001-211149, NASA, Washington, D.C.
21.
Longtin
,
J.
,
Sampath
,
S.
,
Tankiewicz
,
S.
,
Gambino
,
R. J.
, and
Greenlaw
,
R. J.
, 2004, “
Sensors for Harsh Environments by Direct-Write Thermal Spary
,”
IEEE Sens. J.
1530-437X,
4
, pp.
118
121
.
22.
Beaman
,
J. J.
,
Barlow
,
J. W.
,
Bourell
,
D. L.
,
Crawford
,
R. H.
,
Marcus
,
H. L.
, and
McAlea
,
K. P.
, 1997,
Solid Freeform Fabrication—A New Direction in Manufacturing
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
23.
White
,
D.
, 2003, “
Ultrasonic Consolidation of Aluminum Tooling
,”
SAMPE J.
0091-1062,
161
(
1
), pp.
64
65
.
24.
Neville
,
S. W.
, 1961, “
Ultrasonic Welding
,”
Br. Weld. J.
0524-6806,
8
, pp.
177
187
.
25.
Balandin
,
G. F.
, and
Silin
,
L. L.
, 1961, “
Methods for Obtaining Steady Conditions in the Ultrasonic Welding of Metals
,”
Welding Production
,
12
, pp.
1
6
.
26.
Chang
,
U. I.
, and
Frisch
,
J.
, 1974, “
On Optimization of Some Parameters in Ultrasonic Metal Welding
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
53
(
1
), pp.
24
35
.
27.
Okada
,
M.
,
Shin
,
A.
,
Miyagi
,
M.
, and
Matsuda
,
H.
, 1963, “
Joint Mechanism of Ultrasonic Welding
,”
J. Jpn. Inst. Met.
0021-4876,
4
, pp.
250
256
.
28.
Harman
,
G.
, and
Albers
,
J.
, 1977, “
The Ultrasonic Welding Mechanism as Applied to Aluminum- and Gold-Wire Bonding in Microelectronics
,”
IEEE Transactions on Parts, Hybrids, and Packaging
,
PHP-13
(
4
), pp.
406
412
.
29.
Shamala
,
K. S.
,
Murthy
,
L. C. S.
, and
Rao
,
K. N.
, 2004, “
Studies on Optical and Dielectric Properties of Al2O3 Thin Films Prepared by Electron Beam Evaporation and Spray Pyrolysis Method
,”
Mater. Sci. Eng., B
0921-5107,
106
(
3
), pp.
269
274
.
30.
Kreider
,
K. G.
, and
Semancik
,
S.
, 1985, “
Thermal and Sputtered Aluminum Oxide Coatings for High Temperature Electrical Insulation
,”
J. Vac. Sci. Technol. A
0734-2101,
3
(
6
), pp.
2582
2587
.
31.
De Vries
,
E.
, 2004, “
Mechanics and Mechanisms of Ultrasonic Metal Welding
” Ph.D thesis, Ohio State University, Columbus, OH.
32.
Gao
,
Y.
, and
Doumanidis
,
C.
, 2002, “
Mechanical Analysis of Ultrasonic Bonding for Rapid Prototyping
,”
Journal of Manufacturing Science and Technology
,
124
, pp.
426
434
.
You do not currently have access to this content.