Lightweight metal–matrix nanocomposites (MMNCs) (metal matrix with nanosized ceramic particles) can be of significance for automobile, aerospace, and numerous other applications. It would be advantageous to develop effective nanomanufacturing methods for fabrication of bulk components of aluminum based MMNCs through solidification processing. However, it is extremely difficult to disperse nanosized ceramic particles uniformly in molten aluminum. In this paper, a high power ultrasonic probe is used to disperse nanosized SiC particles into molten aluminum alloy A356. Experimental results show that the ultrasonic cavitation based dispersion of nanoparticles in molten aluminum alloy is effective. The uniform nanoparticle dispersion in the Al alloy matrix resulted in significantly improved mechanical properties. To enhance the nanomanufacturing efficiency, various nanoparticle feeding techniques were explored and experimental results are presented.
Skip Nav Destination
xcli@cae.wisc.edu
Article navigation
June 2007
Technical Papers
Ultrasonic Cavitation Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites
Yong Yang,
Yong Yang
Department of Mechanical Engineering,
University of Wisconsin-Madison
, 1513 University Avenue, Madison WI 53706
Search for other works by this author on:
Xiaochun Li
Xiaochun Li
Department of Mechanical Engineering,
xcli@cae.wisc.edu
University of Wisconsin-Madison
, 1513 University Avenue, Madison WI 53706
Search for other works by this author on:
Yong Yang
Department of Mechanical Engineering,
University of Wisconsin-Madison
, 1513 University Avenue, Madison WI 53706
Xiaochun Li
Department of Mechanical Engineering,
University of Wisconsin-Madison
, 1513 University Avenue, Madison WI 53706xcli@cae.wisc.edu
J. Manuf. Sci. Eng. Jun 2007, 129(3): 497-501 (5 pages)
Published Online: February 5, 2006
Article history
Received:
September 27, 2005
Revised:
February 5, 2006
Citation
Yang, Y., and Li, X. (February 5, 2006). "Ultrasonic Cavitation Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites." ASME. J. Manuf. Sci. Eng. June 2007; 129(3): 497–501. https://doi.org/10.1115/1.2714583
Download citation file:
Get Email Alerts
Cited By
Effect of Laser Forming on the Fatigue Behavior of Metal Foams
J. Manuf. Sci. Eng (September 2022)
Characterization and Analysis of the Thermal Conductivity of AlSi10Mg Fabricated by Laser Powder Bed Fusion
J. Manuf. Sci. Eng (October 2022)
A Novel Asymmetric Face Gear Cut by Duplex Face-Milling With Multiple Auxiliary Flank Modification Motions
J. Manuf. Sci. Eng (October 2022)
Effects of Material Properties on Micro-Scale Cutting of TA15 Alloy and Network-Structured TiBw/TA15 Composites
J. Manuf. Sci. Eng (October 2022)
Related Articles
Ultrasonic Cavitation-Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites
J. Manuf. Sci. Eng (April,2007)
Mechanical Properties and Microstructure of Mg ∕ Si C Nanocomposites Fabricated by Ultrasonic Cavitation Based Nanomanufacturing
J. Manuf. Sci. Eng (June,2008)
Fraction Solid Measurements on Solidifying Melt
J. Fluids Eng (March,2004)
Solidification of Phase Change Material Nanocomposite Inside a Finned Heat Sink: A Macro Scale Model of Nanoparticles Distribution
J. Thermal Sci. Eng. Appl (August,2019)
Related Proceedings Papers
Related Chapters
Preparation and Thermal Property of Phase Change Nanocomposites Using Carbon Nanotubes as Additives
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Modeling Grain Boundary Scattering in Nanocomposites
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Pyroelectric Properties of Nanocomposite of Polyvinylidene Fluoride and BaTiO 3
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)