The ultimate goal of future manufacturing is to design, test, and manufacture parts in a virtual environment before they are sent to the shop floor. While Part I of this paper presents the modeling of process simulation in a virtual environment, this second part presents computationally efficient algorithms for optimal selection of depth of cut, width of cut, speed, and feed while considering process constraints and variation of the part geometry along the tool path. The objective function is selected as the material removal rate (MRR), and optimization of milling processes is based on user defined constraints, such as maximum tool deflection, torque/power demand, and chatter stability. The MRR is maximized by optimal selection of cutting speed, feed rate, depth, and width of cut. Two alternative optimization strategies are presented. Preprocess optimization provides allowable depth and width of cut during part programming at the computer aided manufacturing stage using chatter constraint, whereas the postprocess optimization tunes only feed rate and spindle speed of an existing part program to maximize productivity without violating torque, power, and tool deflection limits. Optimized feed rates are filtered by considering machine tool axis limitations, and the algorithms are tested in machining a helicopter gear box cover.

1.
Yazar
,
Z.
,
Koch
,
K. F.
,
Merrick
,
T.
, and
Altan
,
T.
, 1994, “
Feedrate Optimization Based on Cutting Force Calculations in 3-Axis Milling of Dies and Molds With Sculptured Surfaces
,”
Int. J. Mach. Tools Manuf.
0890-6955,
34
, pp.
365
377
.
2.
Spence
,
A. D.
, and
Altintas
,
Y.
, 1994, “
A Solid Modeler Based Milling Process Simulation and Planning System
,”
ASME J. Eng. Ind.
0022-0817,
116
, pp.
61
69
.
3.
Bailey
,
T.
,
Elbestawi
,
M. A.
,
El-Wardany
,
T. I.
, and
Fitzpatrick
,
P.
, 2002, “
Generic Simulation Approach tor Multi-Axis Machining—Part 2: Model Calibration and Feed Rate Scheduling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
634
642
.
4.
Guzel
,
B. U.
, and
Lazoglu
,
I.
, 2004, “
Increasing Productivity in Sculpture Surface Machining via Offline Piecewise Variable Feedrate Scheduling Based on the Force System Model
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
, pp.
21
28
.
5.
Ko
,
J. H.
,
Yun
,
W. S.
, and
Cho
,
D.-W.
, 2003, “
Off-Line Feedrate Scheduling Using Virtual CNC Based on an Evaluation of Cutting Performance
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
383
393
.
6.
Fussell
,
B. K.
,
Jerard
,
R. B.
, and
Hemmett
,
J. G.
, 2001, “
Robust Feedrate Selection for 3-Axis NC Machining Using Discrete Models
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
214
224
.
7.
El Mounayri
,
H.
,
Spence
,
A. D.
, and
Elbestawi
,
M. A.
, 1998, “
Milling Process Simulation—A Generic Solid Modeller Based Paradigm
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
(
2
), pp.
213
221
.
8.
Feng
,
H. Y.
, and
Su
,
N.
, 2000, “
Integrated Tool Path and Feedrate Optimization for Finish Machining of 3D Plane Surfaces
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp.
1157
1572
.
9.
Lim
,
E. M.
, and
Menq
,
C. H.
, 1997, “
Integrated Planning for Precision Machining of Complex Surfaces: I. Cutting-Path and Feedrate Optimization
,”
Int. J. Mach. Tools Manuf.
0890-6955,
31
(
1
), pp.
61
75
.
10.
Weinert
,
K.
,
Enselmann
,
A.
, and
Friedhoff
,
J.
, 1997, “
Milling Simulation for Process Optimization in the Field of Die and Mould Manufacturing
,”
CIRP Ann.
0007-8506,
46
(
1
), pp.
325
328
.
11.
Budak
,
E.
, and
Tekeli
,
A.
, 2005, “
Maximizing Chatter Free Material Removal Rate in Milling Through Optimal Selection of Axial and Radial Depth of Cut Pair
,”
CIRP Ann.
0007-8506,
54/1
, pp.
353
356
.
12.
Li
,
Z. Z.
,
Zheng
,
M.
,
Zheng
,
L.
,
Wu
,
Z. J.
, and
Liu
,
D. C.
, 2003, “
A Solid Model-Based Milling Process Simulation and Optimization System Integrated With CAD/CAM
,”
J. Mater. Process. Technol.
0924-0136,
138
, pp.
513
517
.
13.
Wang
,
K. K.
, 1988, “
Solid Modeling for Optimizing Metal Removal of Three Dimensional NC End Milling
,”
J. Manuf. Syst.
0278-6125,
7
, pp.
57
65
.
14.
Budak
,
E.
, and
Altintas
,
Y.
, 1995, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
0007-8506,
44/1
, pp.
357
362
.
15.
Press
,
W. H.
,
Teukolsky
,
S.
,
Vetterling
,
W.
, and
Flannery
,
B.
, 1988,
Numerical Recipes in C: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge
.
16.
Budak
,
E.
, and
Altintas
,
Y.
, 1994, “
Peripheral Milling Conditions for Improved Dimensional Accuracy
,”
Ann. Geophys.
0992-7689,
34
, pp.
907
918
.
17.
Coleman
,
T.
,
Branch
,
M. A.
, and
Grace
,
A.
, Optimization Toolbox User’s Guide, Matlab The Mathworks Inc., Version 2.
You do not currently have access to this content.