Due to their complex geometries, sculptured surface parts should be machined with multiple cutters of optimal sizes for high quality and productivity. Current methods of determining cutter sizes, however, are conservative and inefficient; their repeating process includes subjective cutter selection, intensive tool-path generation, and time-consuming gouging-and-interference detection in simulation. Our research proposes a new intelligent approach to multiple standard cutters of maximum sizes for three-axis sculptured surface machining. An innovative generic model of maximum allowable cutters in three-axis surface milling is built to eliminate any cutter causing local gouging and global interference. After the optimum standard cutters are automatically selected, their accessible regions can be identified, and the corresponding tool-paths can be generated, respectively. This approach is practical and effective in the process planning for three-axis milling of sculptured surface parts.

1.
D’Souza
,
R. M.
, 2006, “
Tool Sequence Selection for 2.5 D Pockets With Uneven Stock
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
, pp.
33
39
.
2.
Yao
,
Z. Y.
,
Gupta
,
S. K.
, and
Nau
,
D. S.
, 2003, “
Algorithm for Selecting Cutters in Multi-Part Milling Problems
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
825
839
.
3.
Lim
,
T.
,
Corney
,
J.
, and
Clark
,
D. E. R.
, 2000, “
Exact Tool Sizing for Feature Accessibility
,”
Int. J. Adv. Manuf. Technol.
,
16
, pp.
791
802
. 0268-3768
4.
Veeramani
,
D.
, and
Gau
,
Y. S.
, 1997, “
Selection of an Optimal Set of Cutting-Tool Sizes for 212-D Pocket Machining
,”
Comput.-Aided Des.
0010-4485,
29
(
12
), pp.
869
877
.
5.
Balasubramaniam
,
M.
,
Joshi
,
Y.
,
Engels
,
D.
,
Sarma
,
S.
, and
Shaikh
,
Z.
, 2001, “
Tool Selection in Three-Axis Rough Machining
,”
Int. J. Prod. Res.
,
39
(
18
), pp.
4215
4238
. 0020-7543
6.
Yang
,
D. C. H.
, and
Han
,
Z.
, 1999, “
Interference Detection and Optimal Tool Selection in 3-Axis NC Machining of Free-Form Surfaces
,”
Comput.-Aided Des.
0010-4485,
31
(
5
), pp.
303
377
.
7.
Glaeser
,
G.
,
Wallner
,
J.
, and
Pottmann
,
H.
, 1999, “
Collision-Free 3-Axis Milling and Selection of Cutting Tools
,”
Comput.-Aided Des.
0010-4485,
31
, pp.
225
232
.
8.
Lo
,
C. C.
, 2000, “
Two-Stage Cutter-Path Scheduling for Ball-End Milling of Concave and Wall-Bounded Surfaces
,”
Comput.-Aided Des.
0010-4485,
32
, pp.
597
603
.
9.
Lee
,
Y. S.
,
Choi
,
B. K.
, and
Chang
,
T. C.
, 1992, “
Cut Distribution and Cutter Selection for Sculptured Surface Cavity Machining
,”
Int. J. Prod. Res.
,
30
(
6
), pp.
1447
1470
. 0020-7543
10.
Bala
,
M.
, and
Chang
,
T. C.
, 1991, “
Automatic Cutter Selection and Optimal Cutter Path Generation for Prismatic Parts
,”
Int. J. Prod. Res.
,
29
(
11
), pp.
2163
2176
. 0020-7543
11.
Lee
,
Y. S.
, and
Chang
,
T. C.
, 1996, “
Automatic Cutter Selection for 5-Axis Sculptured Surface Machining
,”
Int. J. Prod. Res.
,
34
(
4
), pp.
977
998
. 0020-7543
12.
Jensen
,
C. G.
,
Red
,
W. E.
, and
Pi
,
J.
, 2002, “
Tool Selection for Five-Axis Curvature Matched Machining
,”
Comput.-Aided Des.
0010-4485,
34
, pp.
251
266
.
13.
Choi
,
B. K.
, and
Jun
,
C. S.
, 1989, “
Ball-End Cutter Interference Avoidance in NC Machining of Sculptured Surfaces
,”
Comput.-Aided Des.
0010-4485,
21
(
6
), pp.
371
378
.
14.
Chen
,
Z. C.
, and
Khan
,
S.
, 2007, “
Comprehensive Curvature Analysis Approach to Detecting Local Gouging in 3-Axis Sculptured Surface Finish Machining
,”
Trans. NAMRI/SME
,
35
, pp.
433
440
. 0002-7820
15.
Yoon
,
J. H.
,
Pottmann
,
H.
, and
Lee
,
Y. S.
, 2003, “
Locally Optimal Cutting Positions for 5-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
69
81
.
16.
Rao
,
A.
, and
Sarma
,
R.
, 2000, “
On Local Gouging in Five-Axis Sculptured Surface Machining Using Flat-End Tools
,”
Comput.-Aided Des.
0010-4485,
32
, pp.
409
420
.
You do not currently have access to this content.