This paper presents a fundamental study for the characterization of formability in bending/hemming, or “bendability/hemmability,” of automotive aluminum alloys. Based on the strain/stress nature of the hemline (bent corner) surfaces, maximum surface strain was proposed as the hemming fracture criterion, and it is believed that bendability/hemmability of aluminum alloys can be directly approximated by the fracture strains from plane-strain tensile tests. The criterion was verified by comparing hemming and plane-strain tensile experiments on AA6111-T4 and AAx611-T4 with fracture strains measured, respectively, via a modified angled line method and thickness reductions. After a verification of material hardening laws, the identified failure criterion was implemented into 2D and 3D finite element hemming simulations for fracture predictions. The findings provide the basis for the design of aluminum hems under formality constraints, and it is expected that the fundamental theory and established methodology are applicable to bendability/hemmability evaluations for general sheet materials.

1.
Muderrisoglu
,
A.
,
Murata
,
M.
,
Ahmetoglu
,
M. A.
,
Kinzel
,
G.
, and
Altan
,
T.
, 1996, “
Bending, Flanging and Hemming of Aluminum Sheet—An Experimental Study
,”
J. Mater. Process. Technol.
0924-0136,
59
(
1–2
), pp.
10
17
.
2.
Keeler
,
S. P.
, 1965, “
Determination of Forming Limits in Automotive Stampings
,”
Sheet Metal Industries
,
42
(
461
), pp.
683
691
.
3.
Graf
,
A.
, and
Hosford
,
W.
, 1994, “
The Influence of Strain-Path Changes on Forming Limit Diagrams of Al 6111 T4
,”
Int. J. Mech. Sci.
0020-7403,
36
(
10
), pp.
897
910
.
4.
Stoughton
,
T. B.
, 2000, “
General Forming Limit Criterion for Sheet Metal Forming
,”
Int. J. Mech. Sci.
0020-7403,
42
(
1
), pp.
1
17
.
5.
Wang
,
C. T.
,
Kinzel
,
G.
, and
Altan
,
T.
, 1993, “
Mathematical Modeling of Plane-Strain Bending of Sheet and Plate
,”
J. Mater. Process. Technol.
0924-0136,
39
(
3–4
), pp.
279
304
.
6.
Datsko
,
J.
, and
Yang
,
C. T.
, 1960, “
Correlation of Bendability of Materials With Their Tensile Properties
,”
J. Eng. Ind.
0022-0817,
82
(
4
), pp.
309
314
.
7.
Lloyd
,
D. J.
, 2001, “
Bending in Automotive Aluminum Alloys
,”
Advances in the Metallurgy of Aluminum Alloys
,
ASM International
, pp.
160
166
.
8.
Sarkar
,
J.
,
Kutty
,
T. R. G.
,
Conlon
,
K. T.
,
Embury
,
J. D.
,
Wilkinson
,
D. S.
, and
Lloyd
,
D. J.
, 2001, “
Tensile and Bending Properties of AA5754 Aluminum Alloys
,”
Mater. Sci. Eng., A
0921-5093,
316
(
1–2
), pp.
52
59
.
9.
Dao
,
M.
, and
Li
,
M.
, 2001, “
A Micromechanics Study on Strain Localization-Induced Fracture Initiation in Bending Using Crystal Plasticity Models
,”
Philos. Mag. A
0141-8610,
81
(
8
), pp.
1997
2020
.
10.
Krajewski
,
P. E.
, and
Carsley
,
J. E.
, 2003, “
Heat Treatment Effects on Bending in AA6111
,”
TMS Annual Meeting, Automotive Alloys 2003
, pp.
25
32
.
11.
Ragab
,
A. R.
, and
Saleh
,
C. A.
, 2005, “
Evaluation of Bendability of Sheet Metals Using Void Coalescence Models
,”
Mater. Sci. Eng., A
0921-5093,
395
(
1–2
), pp.
102
109
.
12.
Freudenthal
,
A. M.
, 1950,
The Inelastic Behavior of Engineering Materials and Structures
,
Wiley
,
New York
.
13.
Cockroft
,
M. G.
, and
Latham
,
D. J.
, 1968, “
Ductility and the Workability of Metals
,”
J. Inst. Met.
0020-2975,
56
, pp.
33
39
.
14.
Brozzo
,
P.
,
Deluca
,
B.
, and
Rendina
,
R.
, 1972, “
A New Method for the Prediction of Formability in Metal Sheet, Sheet Metal Forming and Formability
,”
Proceedings of the Seventh Biennial Conference of the IDDRG
, Amsterdam, The Netherlands.
15.
McClintock
,
F.
, 1968, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
363
371
.
16.
Rice
,
J.
, and
Tracey
,
D.
, 1969, “
On Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
0022-5096,
17
(
3
), pp.
201
217
.
17.
Gurson
,
A. L.
, 1977, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
0094-4289,
99
(
1
), pp.
2
15
.
18.
Oyane
,
M.
, 1972, “
Criteria of Ductile Fracture Strain
,”
Bull. JSME
0021-3764,
15
(
90
), pp.
1507
1513
.
19.
Ghosh
,
A. K.
, 1976, “
A Criterion for Ductile Fracture in Sheets Under Biaxial Loading
,”
Metall. Trans. A
0360-2133,
7A
(
4
), pp.
523
533
.
20.
Clift
,
S. E.
,
Hartley
,
P.
,
Sturgess
,
C. E. N.
, and
Rowe
,
G. W.
, 1990, “
Fracture Prediction in Plastic Deformation Processes
,”
Int. J. Mech. Sci.
0020-7403,
32
(
1
), pp.
1
17
.
21.
Bao
,
Y.
, and
Wierzbicki
,
T.
, 2004, “
A Comparative Study on Various Ductile Crack Formation Criteria
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
(
3
), pp.
314
324
.
22.
Lemaitre
,
J.
, 1985, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
0094-4289,
107
(
1
), pp.
83
89
.
23.
Swillo
,
S. J.
,
Iyer
,
K.
, and
Hu
,
S. J.
, 2006, “
Angled Line Method for Measuring Continuously Distributed Strain in Sheet Bending
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
3
), pp.
651
658
.
24.
Hibbitt, Karlsson and Sorenson Inc.
, 2003, ABAQUS Analysis User’s Manual, Version 6.4, Providence, RI.
25.
Matrox Electronic Systems Ltd
., 2002, MATROX INSPECTOR User Guide, Version 4.
26.
Lin
,
G.
,
Li
,
J.
,
Hu
,
S. J.
, and
Cai
,
W.
, 2007, “
A Computational Response Surface Study of Three-Dimensional Aluminum Hemming Using Solid-to-Shell Mapping
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
2
), pp.
360
368
.
27.
Lin
,
G.
,
Iyer
,
K.
,
Hu
,
S. J.
,
Cai
,
W.
, and
Marin
,
S. P.
, 2005, “
A Computational Design-of-Experiments Study of Hemming Processes for Automotive Aluminum Alloys
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
219
(
10
), pp.
711
722
.
28.
Jain
,
M.
,
Lloyd
,
D. J.
, and
Macewen
,
S. R.
, 1996, “
Hardening Laws, Surface Roughness and Biaxial Tensile Limit Strains of Sheet Aluminum Alloys
,”
Int. J. Mech. Sci.
0020-7403,
38
(
2
), pp.
219
232
.
You do not currently have access to this content.