Toroidal surfaces are used in many machinery parts such as ball bearing races, bull nose and indexable endmills, continuously-variable transmissions, and enveloping worm gears. Torisity, the form tolerance of toroidal surfaces, plays an important role in mechanical design and quality control such as component functionality, assemblability, and interchangeability. Compared with simple forms, such as planes, spheres, cylinders, and cones, toroidal surfaces are more complex and the evaluation of torisity has not been thoroughly performed. This paper proposes a nonlinear approach to evaluate torisity information using particle swarm optimization (PSO). Three sets of PSO parameters are compared based on the least-squares objective function and minimum-zone objective function using toroidal geometry characteristics. The effectiveness and robustness of the PSO approaches are validated by experiments on simulated entire, outer, inner, thrust, and endmill toroidal surfaces, which appear in various machinery components. Compared with previous studies in torisity evaluation, the proposed approach is more efficient in the ability to provide the form tolerance and the surface profile information simultaneously. The proposed approach is also more consistent with the tolerance zone definition of ASME standard Y14.5M on dimensioning and tolerancing.

1.
Liang
,
R.
,
Woo
,
T. C.
, and
Hsieh
,
C. -C.
, 1998a, “
Accuracy and Time in Surface Measurement, Part 1: Mathematical Foundations
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
(
1
), pp.
141
149
.
2.
Choi
,
W.
, and
Kurfess
,
T. R.
, 1999a, “
Dimensional Measurement Data Analysis, Part 1: A Zone Fitting Algorithm
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
2
), pp.
238
245
.
3.
Chen
,
C.
, and
Liu
,
C.
, 2000, “
Study on Analyzing the Problem of the Spherical Form Error
,”
Precis. Eng.
0141-6359,
24
(
2
), pp.
119
126
.
4.
Prakasvudhisarn
,
C.
, and
Raman
,
S.
, 2004, “
Framework for Cone Feature Measurement Using Coordinate Measuring Machines
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
1
), pp.
169
177
.
5.
Dhanish
,
P. B.
, and
Mathew
,
J.
, 2007, “
A Fast and Simple Algorithm for Evaluation of Minimum Zone Straightness Error From Coordinate Data
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
32
(
1–2
), pp.
92
98
.
6.
Jywe
,
W.
, and
Liu
,
C.
, 2000, “
A Method for Evaluating the Contour and Tolerance of the Toroidal Cutter With Helicoidal Surfaces
,”
Meas. Sci. Technol.
0957-0233,
11
(
3
), pp.
237
243
.
7.
Aguirre-Cruz
,
J. A.
, and
Raman
,
S.
, 2005, “
Torus Form Inspection Using Coordinate Sampling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
1
), pp.
84
95
.
8.
1994,
ASME Y145M-1994 National Standard on Dimensioning and Tolerancing
,
ASME
,
New York
.
9.
Choi
,
W.
, and
Kurfess
,
T. R.
, 1999b, “
Dimensional Measurement Data Analysis, Part 2: Minimum Zone Evaluation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
2
), pp.
246
250
.
10.
Liu
,
C.
,
Jywe
,
W.
, and
Chen
,
C.
, 2004, “
Quality Assessment on a Conical Taper Part Based on the Minimum Zone Definition Using Genetic Algorithms
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
2–3
), pp.
183
190
.
11.
Ke
,
Z.
, 2007, “
Minimum Zone Evaluation of Sphericity Error Based on Ant Colony Optimization
,”
Eighth International Conference on Electronic Measurement and Instruments
,
IEEE
,
New York
, pp.
535
538
.
12.
Mao
,
J.
,
Zheng
,
H.
,
Cao
,
Y.
, and
Yang
,
J.
, 2006, “
Planar Straightness Error Evaluation Based on Particle Swarm Optimization
,”
Proc. SPIE
0277-786X,
6280
, pp.
62802D
.
13.
Kovvur
,
Y.
,
Ramaswami
,
H.
,
Anand
,
R. B.
, and
Anand
,
S.
, 2008, “
Minimum-Zone Form Tolerance Evaluation Using Particle Swarm Optimization
,”
Int. J. Intell. Syst.
0884-8173,
4
(
1
), pp.
79
96
.
14.
Shi
,
Y.
, and
Eberhart
,
R. C.
, 1999, “
Empirical Study of Particle Swarm Optimization
,”
IEEE Trans. Evol. Comput.
1089-778X,
3
, pp.
1945
1950
.
15.
Kennedy
,
J.
,
Eberhart
,
R. C.
, and
Shi
,
Y.
, 2001,
Swarm Intelligence
,
Morgan Kaufmann
,
San Francisco, CA
.
16.
Kennedy
,
J.
, and
Eberhart
,
R. C.
, 1995, “
Particle Swarm Optimization
,”
IEEE Trans. Neural Netw.
1045-9227,
4
, pp.
1942
1948
.
17.
Reyes-Sierra
,
M.
, and
Coello-Coello
,
C. A.
, 2006, “
Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art
,”
Int. J. Intell. Syst.
0884-8173,
2
(
3
), pp.
287
308
.
18.
Shi
,
Y.
, and
Eberhart
,
R. C.
, 1998, “
A Modified Particle Swarm Optimizer
,”
IEEE International Conference on Evolutionary Computation
,
Anchorage, Alaska
, pp.
69
73
.
19.
Clerc
,
M.
, and
Kennedy
,
J.
, 2002, “
The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space
,”
IEEE Trans. Evol. Comput.
1089-778X,
6
(
1
), pp.
58
73
.
20.
Shi
,
Y.
, and
Eberhart
,
R. C.
, 1998b, “
Parameter Selection in Particle Swarm Optimization
,”
Seventh International Conference of Evolutionary Programming
,
Springer-Verlag
,
San Diego, CA
, pp.
591
600
.
21.
Eberhart
,
R. C.
, and
Shi
,
Y.
, 2000, “
Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization
,”
IEEE Trans. Evol. Comput.
1089-778X,
1
, pp.
84
88
.
22.
Trelea
,
I. C.
, 2003, “
The Particle Swarm Optimization Algorithm-Convergence Analysis and Parameter Selection
,”
Inf. Process. Lett.
0020-0190,
85
(
6
), pp.
317
325
.
23.
Banks
,
A.
,
Vincent
,
J.
, and
Anyakoha
,
C.
, 2007, “
A Review of Particle Swarm Optimization. Part I: Background and Development
,”
Nat. Comput.
1567-7818,
6
(
4
), pp.
467
484
.
24.
Liang
,
R.
,
Woo
,
T. C.
, and
Hsieh
,
C. -C.
, 1998b, “
Accuracy and Time in Surface Measurement, Part 2: Optimal Sampling Sequence
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
(
1
), pp.
150
155
.
25.
Hammersley
,
J. M.
, 1960, “
Monte Carlo Methods for Solving Multivariable Problems
,”
Ann. N.Y. Acad. Sci.
0077-8923,
86
(
3
), pp.
844
874
.
26.
Halton
,
J. H.
, and
Zaremba
,
S. K.
, 1969, “
The Extreme and L2 Discrepancies of Some Plane Sets
,”
Monatsh. Math.
0026-9255,
73
(
4
), pp.
316
328
.
You do not currently have access to this content.