In order to study the deformation mechanisms during ultrahigh strain rate deformation of face centered cubic metals, laser shock peening of a 304L stainless steel is systematically investigated. Two deformation modes—microtwins and microbands—and their interrelationship during high strain rate deformation are discussed in detail. Transmission electron microscopy and selected area electron diffraction are employed to study the deformation modes. It is found that twinning takes place even when the shock pressure is much less than the critical twinning stress in stainless steels. Theoretical critical twinning stress is not the only criteria to decide the deformation modes of twinning or slip. The formation of twinning and slip can be affected by the factors such as loading profile, loading stress/strain rate, stacking fault energy, grain sizes, and cell substructures. Factors that influence twin-slip transition in shock loading are discussed. The formation of dislocation structure is compared with those predicted using 3D dislocation dynamic simulation.

1.
Clauer
,
A. H.
,
Olbrook
,
J. H.
, and
Fairand
,
B. P.
, 1981,
Shock Waves and High Strain-Rate Phenomena in Metals
,
M. A.
Meyers
and
L. E.
Murr
, eds.,
Plenum
,
New York
, p.
675
.
2.
Eyre
,
P.
,
Fabbro
,
R.
,
Merrien
,
P.
, and
Lieurade
,
H. P.
, 1996, “
Laser Shock Processing of Aluminium Alloys. Application to High Cycle Fatigue Behaviour
,”
Mater. Sci. Eng., A
0921-5093,
210
, pp.
102
113
.
3.
Intz
,
H. G.
,
Kotz
,
T. R.
,
Eusch
,
K. C.
,
Egendanck
,
N. M.
,
Taudigel
,
S. J.
,
Offmann
,
H. D.
,
Isner
,
H. H. E.
,
Lang
,
K. A.
,
Chutte
,
S. K.
, and
Ergmann
,
B. H. W.
, 1996, “
XeCl-Excimer Laser-MOPA Chain for Shock Hardening
,”
Proc. SPIE
0277-786X,
3092
, pp.
169
172
.
4.
Gerland
,
M.
, and
Allouin
,
H.
, 1991,
Surface Modification Technologies IV
,
T. S.
Sudarshan
,
D. G.
Bhat
, and
M.
Jeandin
, eds.,
The Minerals, Metals & Materials Society
,
Warrendale, PA
, p.
713
.
5.
Chu
,
J. P.
,
Rigsbee
,
J. M.
,
Banaś
,
G.
,
Lawrence
,
F. V.
, and
Elsayed-Ali
,
H. E.
, 1995, “
Effects of Laser-Shock Processing on the Microstructure and Surface Mechanical Properties of Hadfield Manganese Steel
,”
Metall. Mater. Trans. A
1073-5623,
26
, pp.
1507
1517
.
6.
Andrade
,
U. R.
,
Meyers
,
M. A.
,
Vecchio
,
K. S.
, and
Chokshi
,
A. H.
, 1994, “
Dynamic Recrystallization in High-Strain, High-Strain-Rate Plastic Deformation of Copper
,”
Acta Mater.
1359-6454,
42
, pp.
3183
3195
.
7.
Sanchez
,
J. C.
,
Murr
,
L. E.
, and
Staudhammer
,
K. P.
, 1997, “
Effect of Grain Size and Pressure on Twinning and Microbanding in Oblique Shock Loading of Copper Rods
,”
Acta Mater.
1359-6454,
45
, pp.
3223
3235
.
8.
Li
,
G. A.
,
Zhen
,
L.
,
Li
,
H. T.
,
Tan
,
X.
, 2004, “
Study of Deformed Microstructures Near the Impact Crater in Pure Copper Targets
,”
Mater. Sci. Eng., A
0921-5093,
384
, pp.
12
18
.
9.
Meyers
,
M. A.
,
Gregori
,
F.
,
Kad
,
B. K.
,
Schneider
,
M. S.
,
Kalantar
,
D. H.
,
Remington
,
B. A.
,
Ravichandran
,
G.
,
Boehly
,
T.
, and
Wark
,
J. S.
, 2003, “
Laser-Induced Shock Compression of Monocrystalline Copper: Characterization and Analysis
,”
Acta Mater.
1359-6454,
51
, pp.
1211
1228
.
10.
Murr
,
L. E.
,
Trillo
,
E. A.
,
Bujanda
,
A. A.
, and
Martinez
,
N. E.
, 2002, “
Comparison of Residual Microstructures Associated With Impact Craters in FCC Stainless Steel and BCC Iron Targets: The Microtwin Versus Microband Issue
,”
Acta Mater.
1359-6454,
50
, pp.
121
131
.
11.
Chu
,
J. P.
,
Rigsbee
,
J. M.
,
Banas
,
G.
, and
Elsayed-Ali
,
H. E.
, 1999, “
Laser-Shock Processing Effects on Surface Microstructure and Mechanical Properties of Low Carbon Steel
,”
Mater. Sci. Eng.
0025-5416,
260A
, pp.
260
268
.
12.
Meyers
,
M. A.
,
Xu
,
Y. B.
,
Xue
,
Q.
,
Pérez-Prado
,
M. T.
, and
McNelley
,
T. R.
, 2003, “
Microstructural Evolution in Adiabatic Shear Localization in Stainless Steel
,”
Acta Mater.
1359-6454,
51
, pp.
1307
1325
.
13.
Bay
,
B.
,
Hansen
,
N.
,
Hughes
,
D. A.
, and
Kuhlmann-Wilsdorf
,
D.
, 1992, “
Evolution of FCC Deformation Structures in Polyslip
,”
Scr. Metall.
0036-9748,
40
(
2
), pp.
205
219
.
14.
Huang
,
J. C.
, and
Gray
,
G. T.
, 1989, “
Microband Formation in Shock-Loaded and Quasi-Statically Deformed Metals
,”
Acta Metall.
0001-6160,
37
, pp.
3335
3347
.
15.
Murr
,
L. E.
,
Meyers
,
M. A.
,
Niou
,
S. -C.
,
Chen
,
Y. J.
,
Pappu
,
S.
, and
Kennedy
,
C.
, 1997, “
Shock-Induced Deformation Twinning in Tantalum
,”
Acta Mater.
1359-6454,
45
, pp.
157
175
.
16.
Murr
,
L. E.
, 1981,
Shock Waves and High Strain Rate Phenomena in Metals
,
M. A.
Meyers
and
L. E.
Murr
, eds.,
Plenum
,
New York
, p.
753
.
17.
Nolder
,
R. L.
, and
Thomas
,
G.
, 1964, “
The Substructure of Plastically Deformed Nickel
,”
Acta Metall.
0001-6160,
12
, pp.
227
240
.
18.
Grace
,
F. I.
,
Inman
,
M. C.
, and
Murr
,
L. E.
, “
Shock-Induced Deformation Faults in 70/30 Copper-Zinc Alloy
,”
J. Phys. D: Appl. Phys.
0022-3727,
1
, pp.
1437
1443
(1968).
19.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
, 1990, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
0021-8979,
68
, pp.
775
784
.
20.
Cowan
,
G. R.
, 1965, “
Shock Deformation and the Limiting Shear Strength of Metals
,”
Trans. Metall. Soc. AIME
0543-5722,
233
, pp.
1120
1130
.
21.
Cheng
,
G. J.
, and
Shehadeh
,
M.
, 2005, “
Dislocation Behavior in Silicon Crystal Induced by Laser Shock Peening: A Multiscale Simulation Approach
,”
Scr. Mater.
1359-6462,
53
(
9
), pp.
1013
1018
.
22.
Cheng
,
G. J.
, and
Shehadeh
,
M.
, 2006, “
Multiscale Dislocation Dynamics Analyses of Laser Shock Peeing in Silicon Single Crystals
,”
Int. J. Plast.
0749-6419,
22
(
12
), pp.
2171
2194
.
23.
Lagerlöf
,
K. P. D.
,
Castaing
,
J.
,
Pirouz
,
P.
, and
Heuer
,
A. H.
, 2002, “
Nucleation and Growth of Deformation Twins: A Perspective Based on the Double-Cross-Slip Mechanism of Deformation Twinning
,”
Philos. Mag. A
0141-8610,
82
, pp.
2841
2854
.
24.
Hirth
,
J. P.
, and
Lothe
,
J.
, 1992,
Theory of Dislocations
, 2nd ed.,
Krieger
,
Malabar, UK
.
25.
Chen
,
M.
,
Ma
,
E.
,
Hemker
,
K. J.
,
Sheng
,
H.
,
Wang
,
Y.
, and
Cheng
,
X.
, 2003, “
Deformation Twinning in Nanocrystalline Aluminum
,”
Science
0036-8075,
300
(
5623
), pp.
1275
1277
.
26.
Yapici
,
G. G.
,
Karaman
,
I.
,
Luo
,
Z. P.
,
Maier
,
Y. I.
, and
Chumlyakov
,
Y. I.
, 2004, “
Microstructural Refinement and Deformation Twinning During Severe Plastic Deformation of 316L Stainless Steel at High Temperatures
,”
J. Mater. Res.
0884-2914,
19
(
8
), pp.
2268
2278
.
27.
Marcinkowski
,
M. J.
, and
Miller
,
D. S.
, 1961, “
The Effect of Ordering on the Strength and Dislocation Arrangements in the Ni3Mn Superlattice
,”
Philos. Mag.
1478-6435,
6
, pp.
871
893
.
28.
Copley
,
S. M.
, and
Kear
,
B. H.
, 1968, “
The Dependence of the Width of a Dissociated Dislocation on Dislocation Velocity
,”
Acta Metall.
0001-6160,
16
, pp.
227
231
.
You do not currently have access to this content.