Friction stir spot welding (FSSW) is a solid state joining technology that has the potential to be a replacement for processes like resistance spot welding and rivet technology in certain applications. To optimize the process parameters and to develop FSSW tools, it is important to understand the physics of this complex process that involves frictional contact, high temperature gradients, and large deformations. This paper presents a fully coupled thermo-mechanical finite element model (FEM) model of the plunge phase of a modified refill FSSW. The model was developed in Abaqus/Explicit and the simulation results included the temperature, deformation, stress, and strain distributions in the plates being joined. An experimental study was also conducted to validate the temperatures predicted by the model. The simulation results were in good agreement with the temperatures measured in the experiment. Also, the model was able to predict in a reasonable fashion the stresses and plastic strains in the plates.

1.
Thomas
,
W. M.
,
Nicholas
,
E. D.
,
Needham
,
J. C.
,
Murch
,
M. G.
,
Michael
,
G.
,
Templesmith
,
P.
, and
Dawes
,
C. J.
, 1995, “
Friction Stir Welding
,” G. B. Patent No. 9125978.8 and U.S. Patent No. 5460317.
2.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
, 2005, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R.
0927-796X,
50
, pp.
1
78
.
3.
Arbegast
,
W. J.
, 2006, “
Friction Stir Welding After a Decade of Development
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
85
, pp.
28
35
.
4.
Iwashita
,
T.
, 2003, “
Method and Apparatus for Joining
,” U.S. Patent No. 6601751 B2.
5.
Schilling
,
C.
, and
Dos Santos
,
J.
, 2002, “
Method and Device for Joining At Least Two Adjoining Work Pieces by Friction Welding
,” U.S. Patent No. 0179 682.
6.
Okamoto
,
K.
,
Hunt
,
F.
, and
Hirano
,
S.
, 2005, “
Development of Friction Stir Welding Technique and Machine for Sheet Metal Assembly
,” SAE Paper No. 2005-01-1254.
7.
Badarinarayan
,
H.
,
Hunt
,
F.
, and
Okamoto
,
K.
, 2007,
Friction Stir Welding and Processing
,
Novelty
,
OH
, pp.
235
272
.
8.
Buck
,
G. A.
, and
Langerman
,
M.
, 2004, “
Non-Dimensional Characterization of the Friction Stir/Spot Welding Process Using a Simple Couette Flow Model Part I: Constant Property Bingham Plastic Solution
,”
AIP Conf. Proc.
0094-243X,
712
, pp.
1283
1288
.
9.
Gerlich
,
A.
,
Su
,
P.
,
Bendzsak
,
G. J.
, and
North
,
T. H.
, 2005, “
Numerical Modeling of FSW Spot Welding: Preliminary Results
,”
Friction Stir Welding and Processing III
,
K. V.
Jata
,
M. W.
Mahoney
,
R. S.
Mishra
, and
T. J.
Lienert
, eds.,
The Minerals, Metals and Materials Society
,
Warrendale, PA
, pp.
221
224
.
10.
Su
,
P.
,
Gerlich
,
A.
,
North
,
T. H.
, and
Bendzsak
,
G. J.
, 2007, “
Intermixing in Dissimilar Friction Stir Spot Welds
,”
Metall. Mater. Trans. A
1073-5623,
38
, pp.
584
595
.
11.
Awang
,
M.
,
Mucino
,
V. H.
,
Feng
,
Z.
, and
David
,
S. A.
, 2005, “
Thermo-Mechanical Modeling of Friction Stir Spot Welding Process: Use of an Explicit Adaptive Meshing Scheme
,” SAE Paper No. 2005-01-1251.
12.
Kakarla
,
S. S. T.
,
Muci-Küchler
,
K. H.
,
Arbegast
,
W. J.
, and
Allen
,
C. D.
, 2005, “
Three-Dimensional Finite Element Model of the Friction Stir Spot Welding Process
,”
Friction Stir Welding and Processing III
,
K. V.
Jata
,
M. W.
Mahoney
,
R. S.
Mishra
, and
T. J.
Lienert
, eds.,
The Minerals, Metals and Materials Society
,
Warrendale, PA
, pp.
213
220
.
13.
Muci-Küchler
,
K. H.
,
Kakarla
,
S. S. T.
,
Arbegast
,
W. J.
, and
Allen
,
C. D.
, 2005, “
Numerical Simulation of the Friction Stir Spot Welding Process
,” SAE Paper No. 2005-01-1260.
14.
Itapu
,
S. K.
, and
Muci-Küchler
,
K. H.
, 2006, “
Visualization of Material Flow in the Refill Friction Stir Spot Welding Process
,” SAE Paper No. 2006-01-1206.
15.
Kalagara
,
S.
, and
Muci-Küchler
,
K. H.
, 2007, “
Numerical Simulation of a Refill Friction Stir Spot Welding Process
,”
Friction Stir Welding and Processing IV
,
R. S.
Mishra
,
M. W.
Mahoney
,
T. J.
Lienert
, and
K. V.
Jata
, eds.,
The Minerals, Metals and Materials Society
,
Warrendale, PA
, pp.
369
378
.
16.
Badarinarayan
,
H.
,
Hunt
,
F.
,
Okamato
,
K.
, and
Hirasawa
,
S.
, 2007, “
Study of Plunge Motion During Friction Stir Spot Welding—Temperature and Flow Pattern
,”
Friction Stir Welding and Processing IV
,
R. S.
Mishra
,
M. W.
Mahoney
,
T. J.
Lienert
, and
K. V.
Jata
, eds.,
The Minerals, Metals and Materials Society
,
Warrendale, PA
, pp.
311
322
.
17.
2008,
Abaqus Version 6.8 User Manuals
,
DDS Simulia
,
Providence, RI
.
18.
Allen
,
C. D.
, and
Arbegast
,
W. J.
, 2005, “
Evaluation of Friction Spot Welds in Aluminum Alloys
,” SAE Paper No. 2005-01-1252.
19.
Mitchell
,
I.
, 2004, “
Residual Stress Reduction During Quenching of Wrought 7075 Aluminum
,” MS thesis, Worcester Polytechnic Institute, Worcester, MA.
20.
1998, “
Metallic Materials and Elements for Aerospace Vehicle Structures
,”
MIL-HDBK-5H: Military Handbook006B
,
Department of Defense of the United States of America, Defense Area Printing Service, DODSSP
,
Philadelphia, PA
.
21.
Kakarla
,
S. S. T.
, 2005, “
Simulation of the Initial Plunging Phase of the Friction Stir Spot Welding Process Using FEM
,” MS thesis, South Dakota School of Mines and Technology, Rapid City, SD.
22.
Sakhuja
,
A.
, and
Brevick
,
G. R.
, 2004, “
Prediction of Thermal Fatigue in Tooling for Die-Casting Copper via Finite Element Analysis
,”
AIP Conf. Proc.
0094-243X,
712
, pp.
1881
1886
.
23.
Song
,
M.
, and
Kovacevic
,
R.
, 2003, “
Thermal Modeling of Friction Stir Welding in a Moving Coordinate System and Its Validation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
605
615
.
24.
Gerlich
,
A.
,
Su
,
P.
,
North
,
T. H.
, and
Bendzsak
,
G. J.
, 2005, “
Friction Stir Spot Welding of Aluminum and Magnesium Alloys
,”
Mater. Forum
0883-2900,
29
, pp.
290
294
.
25.
Xu
,
S.
, and
Deng
,
X.
, 2003, “
Two and Three-Dimensional Finite Element Models for the Friction Stir Welding Process
,”
Proceedings of the Fourth International Symposium on Friction Stir Welding
, Park City, UT.
You do not currently have access to this content.