A three-dimensional fluid dynamic model is developed to predict flux decline due to membrane fouling during the microfiltration of semisynthetic metalworking fluids. The model includes surface forces as well as hydrodynamic effects. Two pore model geometries are developed based on sintered aluminum oxide membranes. Simulations conducted using a single-pathway pore geometry illustrate the ability of the three-dimensional model to represent how flow continues through a partially blocked pore and how partial blocking reduces effective cross-sectional area. A four-disk pore geometry is used to compare flux decline behavior for different pore size distributions representing a new membrane and a membrane that had become partially blocked. Flux decline results are found to be consistent with published experimental results for similar membranes. An example shows how the three-dimensional fluid dynamic model may be used to determine the best membrane pore size distribution for a given situation and therefore demonstrates its overall utility as a design tool.

References

1.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Angspatt
,
V. D.
, 2000, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 1: Experimental Investigation of Flux Decline
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
739
745
.
2.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Angspatt
,
V. D.
, 2000, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 2: Analysis of Underlying Mechanisms
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
746
752
.
3.
Mahdi
,
S. M.
, and
Skold
,
R. O.
, 1991, “
Experimental Study of Membrane Filtration for the Recycling of Synthetic Waterbased Metalworking Fluids
,”
Lubr. Eng.
,
24
, pp.
389
395
.
4.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
, 2005, “
Experimental Investigation of Membrane Fouling Due to Microfiltration of Semi-Synthetic Metalworking Fluids
,”
Trans. NAMRI/SME
,
33
, pp.
281
288
.
5.
Rajagopalan
,
N.
,
Rusk
,
T.
, and
Dianovsky
,
M.
, 2004, “
Purification of Semi-Synthetic Metalworking Fluids by Microfiltration
,”
Tribol. Lubr. Technol.
,
60
, pp.
38
44
.
6.
Zhao
,
F.
,
Urbance
,
M.
, and
Skerlos
,
S.
, 2004, “
Mechanistic Model of Coaxial Microfiltration for Semi-Synthetic Metalworking Fluid Microemulsions
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
435
444
.
7.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
, 2008, “
Partial Pore Blocking in Microfiltration Recycling of a Semi-Synthetic Metalworking Fluid
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
041014
.
8.
Bowen
,
W. R.
, and
Sharif
,
A. O.
, 1994, “
Transport Through Microfiltration Membranes—Particle Hydrodynamics and Flux Reduction
,”
J. Colloid Interface Sci.
,
168
, pp.
414
421
.
9.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
, 2008, “
Dynamic Simulations of Alumina Membrane Fouling From Recycling of Semi-Synthetic Metalworking Fluids
,”
ASME J. Manuf. Sci. Eng.
,
130
(
6
), p.
061015
.
10.
Kim
,
M.
, and
Zydney
,
A. L.
, 2004, “
Effect of Electrostatic, Hydrodynamic, and Brownian Forces on Particle Trajectories and Sieving in Normal Flow Filtration
,”
J. Colloid Interface Sci.
,
269
, pp.
425
431
.
11.
Kim
,
M.
, and
Zydney
,
A. L.
, 2005, “
Particle-Particle Interactions During Normal Flow Filtration: Model Simulations
,”
Chem. Eng. Sci.
,
60
, pp.
4073
4082
.
12.
Ham
,
S.
,
Wentz
,
J. E.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2010, “
The Impact of Surface Forces on Particle Flow and Membrane Fouling in the Microfiltration of Metalworking Fluids
,”
ASME J. Manuf. Sci. Eng.
,
132
, p.
011006
.
13.
Ounis
,
H.
,
Ahmadi
,
G.
, and
McLaughlin
,
J. B.
, 1991, “
Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer
,”
J. Colloidal Interface Sci.
,
143
(
1
), pp.
266
277
.
14.
Elimelech
,
M.
,
Gregory
,
J.
,
Jia
,
X.
, and
Williams
,
R. A.
, 1995,
Particle Deposition and Aggregation
,
Butterworth Heinemann
,
Woburn, MA
.
15.
Schneider
,
P.
, and
Uchytil
,
P.
, 1994, “
Liquid Expulsion Permporometry for Characterization of Porous Membranes
,”
J. Membr. Sci.
,
95
, pp.
29
38
.
16.
Š
olcová
,
O.
, Š
najdaufová
,
H.
, and
Schneider
,
P.
, 2003, “
Liquid-Expulsion Perm-Porometry for Characterization of Porous Solids
,”
Microporous Mesoporous Mater.
,
65
, pp.
209
217
.
You do not currently have access to this content.