Rotary ultrasonic machining (RUM) is a hybrid machining approach that combines two material removal mechanisms, namely, diamond grinding and ultrasonic machining. This paper presents the results of dynamic process modeling for RUM of alumina, as currently available literature mainly focuses on static parametric relationships. A stochastic modeling and analysis technique called data dependent systems (DDS) was used to study RUM generated surface profiles and cutting force signals. Variations in the data sets of surface profiles, for the entrance and exit segments of machined holes and for that of machined rods, and cutting force signals were modeled and decomposed to gain insight into the RUM process mechanism. The DDS wavelength decomposition of the surface profiles suggested that the major characteristic root wavelength had a positive correlation with feed rate, and the wavelength magnitude may be linked to the grain size of the workpiece material. The roughness of machined surfaces increased as the tool moved deeper due to reduced flushing efficiency. Surfaces on the machined rods were less sensitive to the input variables than the hole surfaces. Moreover, spindle speed and feed rate affected the cutting force significantly.

References

1.
Benedict
,
G. F.
,
Nontraditional Manufacturing Processes
(
Marcel Dekker
,
New York
, 1987).
2.
Snoeys
,
R.
, 1986, “
Non-Conventional Machining Techniques, the State of the Art
,”
The Winter Annual Meeting of the American Society of Mechanical Engineers
,
Anaheim, California
, December 7–12, PED 22(1) pp.
1
20
.
3.
Stinton
,
D. P.
, 1988, “
Assessment of the State of the Art in Machining and Surface Preparation of Ceramics
,”
Oak Ridge National Laboratory
, Oak Ridge, TN, Report No. ORNL/TM-10791.
4.
Jiao
,
Y.
,
Hu
,
P.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2005, “
Rotary Ultrasonic Machining of Ceramics: Design of Experiments
,”
Int. J. Manuf. Technol. Manag.
,
7
(
2/4
), pp.
192
206
.
5.
Li
,
Z. C.
,
Jiao
,
Y.
,
Deines
,
T. W.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2005, “
Rotary Ultrasonic Machining of Ceramic Matrix Composites: Feasibility Study and Designed Experiments
,”
Int. J. Mach. Tools Manuf.
,
45
(
12–13
), pp.
1402
1411
.
6.
Churi
,
N. J.
,
Pei
,
Z. J.
,
Shorter
,
D. C.
, and
Treadwell
,
C.
, 2007, “
Rotary Ultrasonic Machining of Silicon Carbide: Designed Experiments
,”
Int. J. Manuf. Technol. Manag.
,
12
(
1/3
), pp.
284
298
.
7.
Cong
,
W.
,
Pei
,
Z. J.
,
Churi
,
N. J.
, and
Wang
,
Q.
, 2009, “
Rotary Ultrasonic Machining of Stainless Steel: Design of Experiments
,”
Trans. North Am. Manuf. Res. Inst. SME
,
37
(
1
), pp.
261
268
.
8.
Cong
,
W.
,
Pei
,
Z. J.
, Van
Vleet
,
E. G.
, and
Wang
,
Q.
, 2009, “
Surface Roughness in Rotary Ultrasonic Machining of Stainless Steel
,”
Proceedings of the IIE Annual Conference and Expo 2009—Innovations Revealed
,
Miami, FL
, May 30-June 3.
9.
Churi
,
N. J.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2006, “
Rotary Ultrasonic Machining of Titanium Alloy: Effects of Machining Variables
,”
Mach. Sci. Technol.
,
10
(
3
), pp.
301
322
.
10.
Churi
,
N. J.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2007, “
Rotary Ultrasonic Machining of Titanium Alloy (Ti-6Al-4V): Effects of Tool Variables
,”
Int. J. Precis. Technol.
,
1
(
1
), pp.
85
96
.
11.
Markov
,
A. I.
, 1977, “
Ultrasonic Drilling and Milling of Hard Non-Metallic Materials with Diamond Tools
,”
Mach. Tooling
,
48
(
9
), pp.
45
47
.
12.
Pei
,
Z. J.
,
Ferreira
,
P. M.
, and
Haselkorn
,
M.
, 1995, “
Plastic Flow in Rotary Ultrasonic Machining of Ceramics
,”
J. Mater. Process. Technol.
,
48
(
1–4
), pp.
771
777
.
13.
Pei
,
Z. J.
, and
Ferreira
,
P. M.
, 1998, “
Modeling of Ductile-Mode Material Removal in Rotary Ultrasonic Machining
,”
Int. J. Mach. Tools Manuf.
,
38
(
10–11
), pp.
1399
1418
.
14.
Pei
,
Z. J.
,
Khanna
,
N.
, and
Ferreira
,
P. M.
, 1995, “
Rotary Ultrasonic Machining of Structural Ceramics: A Review
,”
Ceram. Eng. Sci. Proc.
,
16
(
1
), pp.
259
278
.
15.
Li
,
Z. C.
, and
Pei
,
Z. J.
, 2007,
Developments in Ceramic Materials Research
,
Nova Science Publishers
,
New York
, pp.
35
52
, Chap. II.
16.
Khoo
,
C. Y.
,
Hamzah
,
E.
, and
Sudin
,
I.
, 2008, “
A Review on the Rotary Ultrasonic Machining of Advanced Ceramics
,”
J. Mekanikal
,
25
, pp.
9
23
.
17.
Hu
,
P.
,
Zhang
,
J.
,
Jiao
,
Y.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2003, “
Experimental Investigation on Coolant Effects in Rotary Ultrasonic Machining
,”
Proceedings of the NSF Workshop on Research Needs in Thermal Aspects of Material Removal Processes
,
Stillwater, OK
, June 10–12, pp.
340
345
.
18.
Zeng
,
W. M.
,
Li
,
Z. C.
,
Xu
,
X. P.
,
Pei
,
Z. J.
,
Liu
,
J. D.
, and
Pi
,
J.
, 2008, “
Experimental Investigation of Intermittent Rotary Ultrasonic Machining
,”
Key Eng. Mater.
,
359–360
(
1
), pp.
425
430
.
19.
Pandit
,
S. M.
,
Rajurkar
,
K. P.
, and
Shaw
,
M. C.
, 1980, “
Data Dependent Systems Approach to EDM Process Modeling from Surface Roughness Profiles
,”
CIRP Ann.–Manuf. Technol.
,
29
(
1
), pp.
107
112
.
20.
Williams
,
R. E.
, and
Rajurkar
,
K. P.
, 1992, “
Stochastic Modeling and Analysis of Abrasive Flow Machining
,”
J. Eng. Ind.
,
114
(
1
), pp.
74
81
.
21.
Williams
,
R. E.
, and
Melton
,
V. L.
, 1998, “
Abrasive Flow Finishing of Stereolithography Prototypes
,”
Rapid Prototyping J.
,
4
(
2
), pp.
56
67
.
22.
Webb
,
K. E.
, 1989, “
Surface Finish Characteristics of Inconel Cut by Abrasive Water Jet Machining
,” M.S. Thesis, University of Nebraska-Lincoln, Lincoln, NE.
23.
Revach
,
S.
, 1980, “
Data Dependent Systems Approach to Decomposition of Surface Roughness Generated in Turning
,” M.S. Thesis, Michigan Technological University, Houghton, MI.
24.
Pandit
,
S. M.
, and
Sathyanarayanan
,
G.
, 1981, “
A New Approach to the Analysis of Wheel Workpiece Interaction in Surface Grinding
,”
Proceedings of the 9th North American Manufacturing Research Conference
,
University Park, PA
, May 19–22, pp.
275
281
.
25.
Pandit
,
S. M.
, and
Sathyanarayanan
,
G.
, 1984, “
Data-Dependent Systems Approach to Surface Generation in Grinding
,”
J. Eng. Ind.
,
106
(
1
), pp.
205
212
.
26.
Pandit
,
S. M.
, and
Sathyanarayanan
,
G.
, 1984, “
Decomposition of Forces and Specific Energy in Grinding
,”
Proceedings of the 12th North American Manufacturing Research Conference
,
Houghton, MI
, May 30-June 1, pp.
314
321
.
27.
Sathyanarayanan
,
G.
, and
Pandit
,
S. M.
, 1985, “
Two Wavelength Characteristic Grain Model for Grinding Wheel
,”
Ann. CIRP
,
34
(
1
), pp.
299
303
.
28.
Williams
,
R. E.
, 1998, “
Acoustic Emission Characteristics of Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
264
271
.
29.
Pandit
,
S. M.
,
Subramanian
,
T. L.
, and
Wu
,
S. M.
, 1974, “
Modeling Machine Tool Chatter by Time Series
,”
J. Eng. Ind.
,
97
(
Series B
), pp.
211
215
.
30.
Wu
,
J.
, 2009, “
Stochastic Modeling and Analysis of Rotary Ultrasonic Machining
,” M.S. Thesis, University of Nebraska-Lincoln, Lincoln, NE.
31.
Wu
,
J.
,
Cong
,
W.
,
Williams
,
R. E.
and
Pei
,
Z. J.
, “
Stochastic Modeling and Analysis of Rotary Ultrasonic Machining
,”
MSEC 2009-84037, ASME Int’l Manufacturing Science and Engineering Conference
, Oct. 4–7, 2009,
West Lafayette, IN
.
32.
Pandit
,
S. M.
, and
Wu
,
S. M.
,
Time Series And System Analysis With Applications
(
Krieger Pub. Co.
,
Malabar, FL
, 2001).
33.
Dörre
,
E.
, and
Hübner
,
H.
,
Alumina : Processing, Properties, And Applications
(
Springer-Verlag
,
Berlin, Germany/NY
, 1984).
34.
Brady
,
G. S.
, and
Clauser
,
H. R.
,
Materials Handbook : An Encyclopedia For Managers, Technical Professionals, Purchasing and Production Managers, Technicians, Supervisors, and Foremen
(
McGraw-Hill
,
NY
, 1991).
35.
Qin
,
N.
,
Pei
,
Z. J.
,
Treadwell
,
C.
, and
Guo
,
D. M.
, 2009, “
Physics-Based Predictive Cutting Force Model in Ultrasonic-Vbration-Assisted Grinding for Titanium Drilling
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041011
.
You do not currently have access to this content.