Abstract

In machining process, machining accuracy of part mainly depends on the position and orientation of the cutting tool with respect to the workpiece which is influenced by errors of machine tools and cutter-workpiece-fixture system. A systematic modeling method is presented to integrate the two types of error sources into the deviation of the cutting tool relative to the workpiece which determines the accuracy of the machining system. For the purpose of minimizing the machining error, an adjustment strategy of tool path is proposed on the basis of the generation principle of the cutter location source file (CLSF) in modern computer aided manufacturing (CAM) system by means of the prediction deviation, namely, the deviation of the cutting tool relative to the workpiece in computer numerical control (CNC) machining operation. The resulting errors are introduced as adjustment values to adjust the nominal tool path points from cutter location source file from commercial CAM system prior to machining. Finally, this paper demonstrates the effectiveness of the prediction model and the adjustment technique by two study cases.

References

1.
Schultschik
,
R.
, 1977, “
The Components of the Volumetric Accuracy
,”
Ann. CIRP
,
26
(
1
), pp.
223
228
.
2.
Ferreira
,
P. M.
, and
Liu
,
C. R.
, 1986, “
A Contribution to the Analysis and Adjustment of the Geometric Error of a Machining Center
,”
Ann. CIRP
,
35
(
1
), pp.
259
262
.
3.
Soons
,
J. A.
,
Theuws
,
F. C.
, and
Schellekens
,
P. H.
, 1992, “
Modeling and Errors of Multi-Axis Machines: A General Methodology
,”
Precis. Eng.
,
14
(
1
), pp.
5
19
.
4.
Chen
,
J. S.
,
Yuan
,
J. X.
,
Ni
,
J.
, and
Wu
,
S. M.
, 1993, “
Real-Time Adjustment for Time-variant Volumetric Errors on a Machining Center
,”
J. Eng. Ind.
,
115
(
4
), pp.
472
479
.
5.
Lee
,
J. H.
,
Liu
,
Y.
, and
Yang
,
S. H.
, 2006, “
Accuracy Improvement of Miniaturized Machine Tool: Geometric Error Modeling and Adjustment
,”
Int. J. Mach. Tools Manuf.
,
46
, pp.
1508
1516
.
6.
Hsu
,
Y. Y.
, and
Wang
,
S. S.
, 2007, “
A New Adjustment Method for Geometry Errors of Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
352
360
.
7.
Asada
,
H.
, and
By
,
A. B.
, 1985, “
Kinematic Analysis of Workpart Fixturing for Flexible Assembly With Automatically Reconfigurable Fixtures
,”
IEEE J. Rob. Autom.
,
1
(
1
), pp.
86
94
.
8.
Li
,
B.
, and
Melkote
,
S. N.
, 1999, “
Improved Workpiece Location Accuracy Through Fixture Layout Optimization
,”
Int. J. Mach. Tools Manuf.
,
39
(
6
), pp.
871
883
.
9.
Deng
,
H.
, and
Melkote
,
S. N.
, 2006, “
Determination of Minimum Clamping Forces for Dynamically Stable Fixturing
,”
Int. J. Mach. Tools Manuf.
,
46
(
7–8
), pp.
847
857
.
10.
Ohwovoriole
,
M. S.
, and
Roth
,
B.
, 1981, “
An Extension of Screw Theory
,”
ASME, J. Mech. Des.
,
103
, pp.
725
735
.
11.
Shawki
,
G. S. A.
, and
Abdel-Aal
,
M. M.
, 1965, “
Effect of Fixture Rigidity of and Wear on Dimensional Accuracy
,”
Int. J. Mach. Tools Manuf.
,
5
(
3
), pp.
183
202
.
12.
Weill
,
R.
,
Darel
,
I.
, and
Laloum
,
M.
, 1991, “
The Influence of Fixture Positioning Errors on the Geometric Accuracy of Mechanical Parts
,”
Proceedings of the CIRP Conference on PE & ME
, pp.
215
225
13.
Rong
,
Y.
,
Li
,
W.
, and
Bai
,
Y.
, 1999, “
Locating Error Analysis for Computer-Aided Fixture Design and Verification
,”
Proceedings the Computer in Engineering Conference and the Engineering Database Symposium
ASME
,
New York
, pp.
825
832
.
14.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
, 1997, “
Variational Method of Robust Fixture Configuration Design for 3D Workpiece
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4
), pp.
593
602
.
15.
Krishnakumar
,
K.
, and
Melkote
,
S. N.
, 2000, “
Machining Fixture Layout Optimization Using the Genetic Algorithm
,”
Int. J. Mach. Tools Manuf.
,
40
(
4
), pp.
579
598
.
16.
Zhang
,
Y.
,
Hu
,
W.
, and
Rong
,
Y.
, 2001, “
Graph-Based Set-up Planning and Tolerance Decomposition for Computer Aided Fixture Design
,”
Int. J. Prod. Res.
,
39
(
14
), pp.
3109
3126
.
17.
Xiong
,
C. H.
,
Li
,
Y. F.
,
Rong
,
Y.
, and
Xiong
,
Y. L.
, 2002, “
Qualitative Analysis and Quantitative Evaluation of Fixturing
,”
Rob. Comput.-Integr. Manufact.
,”
18
(
5
), pp.
335
342
.
18.
Xiong
,
C. H.
,
Xiong
,
Y. L.
, and
Wang
,
M. Y.
, 2003, “
Clamping Planning in Workpiece-Fixture Systems
,”
Proceedings of ASME Manufacturing Engineering Division
, Vol.
14
, pp.
267
272
.
19.
Kang
,
Y.
,
Rong
,
Y.
,
Yang
,
J.
, and
Ma
,
W.
, 2002, “
Computer-Aided Fixture Design Verification
,”
Assem. Autom.
,
22
(
4
), pp.
350
359
.
20.
Marin
,
R.
, and
Ferreira
,
P.
, 2003, “
Analysis of Influence of Fixture Locator Errors on the Compliance of the Work Part Features to Geometric Tolerance Specification
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
609
616
.
21.
Raghu
,
A.
, and
Melkote
,
S. N.
, 2005, “
Modeling of Workpiece Location Error Due to Fixture Geometric Error and Fixture-Workpiece Compliance
,”
ASME J. Manuf. Sci. Eng.
,
127
, pp.
75
83
.
22.
Choudhuri
,
S. A.
, and
DeMeter
,
E. C.
, 1999, “
Tolerance Analysis of Machining Fixture Locators
,
ASME J. Manuf. Sci. Eng.
, ”
121
(
2
), pp.
273
281
.
23.
Qin
,
G. H.
,
Zhang
,
W. H.
,
Wu
,
Z. X.
, and
Wan
,
M.
, 2007, “
Systematic Modeling of Workpiece-Fixture Geometric Default and Compliance for the Prediction of Workpiece Machining Error
,”
ASME J. Manuf. Sci. Eng.
,
129
, pp.
789
129
.
24.
Xiong
,
C. H.
,
Ding
,
H.
, and
Xiong
,
Y. L.
,
Fundamentals of Robotic Grasping and Fixturing
(
World Scientific
,
Singapore
, 2007).
25.
Xiong
,
C. H.
,
Rong
,
Y. K.
,
Tang
,
Y.
, and
Xiong
,
Y. L.
, 2007, “
Fixturing Model and Analysis
,”
Int. J. Comput. Appl. Technol.
,
28
(
1
), pp.
34
45
.
26.
Johnson
,
K. L.
,
Contact Mechanics
(
Cambridge University
,
New York
, 1985).
27.
Xiong
,
C. H.
,
Wang
,
M. Y.
,
Tang
,
Y.
, and
Xiong
,
Y. L.
, 2008, “
On Clamping Planning in Workpiece-Fixture Systems
,”
IEEE J. Rob. Autom.
,
5
(
3
), pp.
407
419
.
28.
Altintas
,
Y.
, and
Lee
,
P.
, 1998, “
Mechanics and Dynamics of Ball End Milling
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
684
692
.
You do not currently have access to this content.