This paper describes the development and implementation of closed-loop control for oval stamp forming tooling using MATLAB®’s SIMULINK® and the dSPACE®CONTROLDESK®. A traditional PID controller was used for the blank holder pressure and an advanced controller utilizing fuzzy logic combining a linear quadratic gauss controller and a bang–bang controller was used to control draw bead position. The draw beads were used to control local forces near the draw beads. The blank holder pressures were used to control both wrinkling and local forces during forming. It was shown that a complex, advanced controller could be modeled using MATLAB’s SIMULINK and implemented in DSPACE CONTROLDESK. The resulting control systems for blank holder pressures and draw beads were used to control simultaneously local punch forces and wrinkling during the forming operation thereby resulting in a complex control strategy that could be used to improve the robustness of the stamp forming processes.

References

1.
Neugebauer
,
R.
, and
Breaunlich
,
H.
, 1997, “
Influence on Materials Flow in Deep Drawing Using Individual Controllable Draw Pins and Smooth Blankholder Design
,” Society of Automotive Engineers, Publication No. 970989, Detroit, Michigan.
2.
Doege
,
E.
,
Elend
,
L. E.
, and
Ropers
,
C.
, 1999, “
Pliable Blankholder Systems for the Optimization of Process Conditions in Deep Drawing
,”
Advanced Technology of Plasticity, Proceedings of the 6th ICTP
, pp.
177
182
.
3.
Neugebauer
,
R.
,
Hoffman
,
M.
,
Roscher
,
H. J.
,
Scheffler
,
S.
, and
Wolf
,
K.
, 2006, “
Control of Sheet-Metal Forming Processes With Piezoactuators in Smart Structures
,”
Proc. SPIE
,
6171
, p.
61710E
.
4.
Bae
,
G. H.
,
Songa
,
J. H.
,
Huha
,
H.
,
Kimb
,
S. H.
, and
Park
,
S. H.
, 2007, “
Simulation-Based Prediction Model of the Draw-Bead Restraining Force and Its Application to Sheet Metal Forming Process
,”
J. Mater. Process Technol.
,
187
, pp.
123
127
.
5.
Samuel
,
M.
, 2002, “
Influence of Draw Bead Geometry on Sheet Metal Forming
,”
J. Mater. Process Technol.
,
122
(
1
), pp.
94
103
.
6.
Xu
,
S. G.
, and
Weinmann
,
K. J.
, 1996, “
An Investigation of Draw Bead Control in Rectangular Box Forming by Finite Element Modeling
,”
Trans. NAMRI/ SME
,
24
, pp.
137
142
.
7.
Bohn
,
M. L.
, 1999, “
Optimization of the Sheet Metal Stamping Process: Closed-Loop Active Draw Bead Control Combined With In-die Process Sensing
,” Ph.D. Thesis, Michigan Technological University, Houghton, MI.
8.
Kernosky
,
S. K.
, and
Weinmann
,
K. J.
, 1997, “
A Sensing System for Real Time Control of the Sheet Metal Drawing Process
,”
Trans. NAMRI/SME
,
25
, pp.
37
41
.
9.
Bohn
,
M. L.
,
Jurthe
,
S. U.
, and
Weinmann
,
K. J.
, 1998, “
New Multi-Point Active Draw Bead Forming Die: Model Development for Process Optimization
,”
Proceedings of SAE International Congress and Exposition
, Paper No. 980076.
10.
Bohn
,
M. L.
,
Jurthe
,
S. U.
, and
Weinmann
,
K. J.
, 1998, “
Using Localized Closed-Loop Force Control to Provide Robustness in Sheet Metal Forming
,”
Trans. NAMRI/SME
,
36
, pp.
97
102
.
11.
Du
,
H.
, and
Klamecki
,
B.
, 1999, “
Force Sensors Embedded in Surfaces for Manufacturing and Other Tribological Process Monitoring
,”
ASME J. MSE
,
121
, pp.
739
748
.
12.
Sah
,
S.
, and
Gao
,
R.
, 2010, “
Effect of Clearance and Embedding Depth of Sensors for Integrated Forming Process Monitoring
,”
Trans. NAMRI/SME
,
38
, pp.
639
646
.
13.
Siegert
,
K.
,
Ziegler
,
M.
, and
Wagner
,
S.
, 1997, “
Closed Loop Control of the Friction Force. Deep Drawing Process
,”
J. Mater Process Technol.
,
71
, pp.
126
133
.
14.
Behrens
,
B.-A.
,
Yun
,
J.-W.
, and
Milch
,
M.
, 2005, “
Closed-Loop-Control of the Material Flow in the Deep Drawing Process
,”
Adv. Mater. Res.
,
6–8
, pp.
321
328
.
15.
Doege
,
E.
,
Schmidt-Jürgensen
,
R.
,
Huinink
,
S.
, and
Yun
,
J.-W.
, 2003, “
Development of an Optical Sensor for the Measurement of the Material Flow in Deep Drawing Processes
,”
CIRP Ann.
,
52
, pp.
225
228
.
16.
Krishnan
,
N.
, and
Cao
,
J.
, 2003, “
Estimation of Optimal Blank Holder Force Trajectories in Segmented Binders Using an ARMA Model
,”
ASME J. MSE
,
125
, pp.
763
770
.
17.
Hengelhaupt
,
J.
,
Vulcan
,
M.
,
Darm
,
F.
,
Ganz
,
P.
, and
Schweizer
,
R.
, 2006, “
Robust Deep Drawing Process of Extensive Car Body Panels
,”
Presented at the New Developments in Sheet Metal Forming
,
IFU, University of Stuttgart
.
18.
Bohn
,
M. L.
,
Michler
,
J. R.
, and
Weinmann
,
K. J.
, 1996, “
New Concept for a Hydro-Mechanical Press Conversion for Sheet Metal Forming Research
,” SME Paper No. MF96-126.
19.
Neher
,
W.
,
Weinmann
,
K. J.
, and
Emblom
,
W. J.
, 2001, “
Optimization of the Blankholder Thickness for Sheet Forming Using Finite Element Analysis
,”
Trans. NAMRI/SME
,
29
, pp.
59
66
.
20.
Neher
,
W.
, and
Weinmann
,
K. J.
, 2002, “
Flexible Blankholder Design Using Finite Element Analysis
,”
Proceedings of the 7th ICTP
,
Yokohama, Japan
.
21.
Neher
,
W.
,
Emblom
,
W. J.
, and
Weinmann
,
K. J.
, 2007, “
Computer-Aided Blankholder Design for Sheet Panel Drawing
,”
Trans. NAMRI/SME
,
35
, pp.
97
104
.
22.
Emblom
,
W. J.
, and
Weinmann
,
K. J.
, 2008, “
Improved Robustness through Closed-Loop Control for Aluminum Sheet Metal Stamp Forming
,”
Proceedings of ASME International Congress IMECHE-2008
, Paper No. 2008-67025.
You do not currently have access to this content.