In this paper, a new 5-axis tool positioning algorithm called the rotary contact method (RCM) for open concave surface machining using the toroidal cutter is developed. The RCM comes from the reverse thinking of multipoint machining (MPM) method and apparently distinguishes the traditional tool positioning principles, as it determines the optimal tool positions based on the offset surface instead of the design surface. The basic idea of the RCM is to determine the initial tool location first and then rotate the tool for required contact. The RCM can not only guarantee gouge-free tool positions without the additional local gouge checking and correction process but also effectively produce big machined strip width for open form surface machining just like the MPM. Besides, this new method is simple to implement. Machining simulation was performed to verify the validity of the RCM.

References

1.
Vickers
,
G. W.
, and
Quan
,
K. W.
, 1989, “
Ball-Mills Versus End-Mills for Curved Surface Machining
,”
J. Eng. Ind.
,
111
(
22
), pp.
22
26
.
2.
Jensen
,
C. G.
, and
Anderson
,
D. C.
, 1993, “
Accurate Tool Placement and Orientation for Finished Surface Machining
,”
J. Des. Manuf.
,
3
(
4
), pp.
251
261
.
3.
Jensen
,
C. G.
,
Anderson
,
D. C.
, and
Mullins
,
S. H.
, 1993, “
Scallop Elimination Based on Precise 5-Axis Tool Placement, Orientation, and Step-Over Calculations
,”
ASME Adv. Des. Autom.
,
65
(
2
), pp.
535
544
.
4.
Rao
,
N.
,
Bedi
,
S.
, and
Buchal
,
R.
, 1996, “
Implementation of the Principal-Axis Method for Machining of Complex Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
11
, pp.
249
257
.
5.
Rao
,
N.
,
Ismail
,
F.
, and
Bedi
,
S.
, 1997, “
Tool Path Planning for Five-Axis Machining Using the Principal Axis Method
,”
Int. J. Mach. Tools Manuf.
,
37
(
7
), pp.
1025
1040
.
6.
Lee
,
Y. S.
, 1997, “
Admissible Tool Orientation Control of Gouging Avoidance for 5-Axis Complex Surface Machining
,”
Comput.-Aided Des.
,
29
(
7
), pp.
507
521
.
7.
Wang
,
X. C.
,
Li
,
Y. B.
,
Ghosh
,
S. K.
, and
Wu
,
X. T.
, 1993, “
Curvature Catering—A New Approach in Manufacturing of Sculptured Surface (Part1.Theorem)
,”
J. Mater. Process. Technol.
,
38
(
1–2
), pp.
159
176
.
8.
Wang
,
X. C.
,
Li
,
Y. B.
,
Ghosh
,
S. K.
, and
Wu
,
X. T.
, 1993, “
Curvature Catering—A New Approach in Manufacturing of Sculptured Surface (Part2.Methodology)
,”
J. Mater. Process. Technol.
,
38
(
1–2
), pp.
177
194
.
9.
Li
,
F.
,
Wang
,
X. C.
,
Ghosh
,
S. K.
, and
Kong
,
D. Z.
, 1995, “
Gouge Detection and Tool Position Modification for Five-Axis NC Machining of Sculptured Surfaces
,”
J. Mater. Process. Technol.
,
48
, pp.
739
745
.
10.
Li
,
F.
,
Wang
,
X. C.
,
Ghosh
,
S. K.
, and
Kong
,
D. Z.
, 1995, “
Tool-Path Generation for Machining Sculptured Surfaces
,”
J. Mater. Process. Technol.
,
48
, pp.
811
816
.
11.
Chiou
,
J. C. J.
, 2004, “
Accurate Tool Position for Five-Axis Ruled Surface Machining by Swept Envelope Approach
,”
Comput.-Aided Des.
,
36
(
10
), pp.
967
974
.
12.
Wu
,
C. Y.
, 1995, “
Arbitrary Surface Flank Milling of Fan, Compressor, and Impeller Blades
,”
ASME J. Eng. Gas Turbines Power
,
117
(
3
), pp.
534
539
.
13.
Liu
,
X. W.
, 1995, “
Five-Axis NC Cylindrical Milling of Sculptured Surfaces
,”
Comput.-Aided Des.
,
27
(
12
), pp.
887
894
.
14.
Tsay
,
D. M.
, and
Her
,
M. J.
, 2001, “
Accurate 5-Axis Machining of Twisted Ruled Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
731
738
.
15.
Bedi
,
S.
,
Mann
,
S.
, and
Menzel
,
C.
, 2003, “
Flank Milling With Flat End Milling Cutters
,”
Comput.-Aided Des.
,
35
(
3
), pp.
293
300
.
16.
Menzel
,
C.
,
Bedi
,
S.
, and
Mann
,
S.
, 2004, “
Triple Tangent Flank Milling of Ruled Surfaces
,”
Comput.-Aided Des.
,
36
(
3
), pp.
289
296
.
17.
Young
,
H. T.
,
Chang
,
L. C.
,
Gerschwiler
,
K.
, and
Kamps
,
S.
, 2004, “
A Five-Axis Rough Machining Approach for a Centrifugal Impeller
,”
Int. J. Adv. Manuf. Technol.
,
23
, pp.
233
239
.
18.
Chu
,
C. H.
, and
Chen
,
J. T.
, 2005, “
Tool Path Planning for Five-Axis Flank Milling With Developable Surface Approximation
,”
Int. J. Adv. Manuf. Technol.
,
29
, pp.
707
713
.
19.
Senatore
,
J.
,
Monies
,
F.
,
Redonnet
,
J. M.
, and
Rubio
,
W.
, 2005, “
Analysis of Improved Positioning in Five-Axis Ruled Surface Milling Using Envelope Surface
,”
Comput.-Aided Des.
,
37
(
10
), pp.
989
998
.
20.
Gong
,
H.
,
Cao
,
L. X.
, and
Liu
,
J.
, 2005, “
Improved Positioning of Cylindrical Cutter for Flank Milling Ruled Surfaces
,”
Comput.-Aided Des.
,
37
(
12
), pp.
1205
1213
.
21.
Wu
,
P. H.
,
Li
,
Y. W.
, and
Chu
,
C. H.
, 2008, “
Tool Path Planning for 5-Axis Flank Milling Based on Dynamic Programming Techniques
,”
Advances in Geometric Modeling and Processing
, Vol.
4975
, pp.
570
577
.
22.
Sprott
,
K.
, and
Ravani
,
B.
, 2008, “
Cylindrical Milling of Ruled Surfaces
,”
J. Adv. Manuf. Technol.
,
38
, pp.
649
656
.
23.
Gong
,
H.
, and
Wang
,
N.
, 2009, “
Optimize Tool Paths of Flank Milling With Generic Cutters Based on Approximation Using Envelope Surface
,”
Comput.-Aided Des.
,
41
(
12
), pp.
981
989
.
24.
Ding
,
Y.
,
Zhu
,
L. M.
, and
Ding
,
H.
, 2009, “
On a Novel Approach to Planning Cylindrical Cutter Location for Flank Milling of Ruled Surfaces
,”
Int. J. Prod. Res.
,
47
(
12
), pp.
3289
3305
.
25.
Warkentin
,
A.
,
Bedi
,
S.
, and
Ismail
,
F.
, 1995, “
5-Axis Milling of Spherical Surfaces
,”
Int. J. Mach. Tools Manuf.
,
36
(
2
), pp.
229
243
.
26.
Warkentin
,
A.
,
Ismail
,
F.
, and
Bedi
,
S.
, 1998, “
Intersection Approach to Multi-Point Machining of Sculptured Surfaces
,”
Comput. Aided Geom. Des.
,
15
(
6
), pp.
567
584
.
27.
Warkentin
,
A.
,
Ismail
,
F.
, and
Bedi
,
S.
, 2000, “
Multi-Point Tool Positioning Strategy for 5-Axis Machining of Sculptured Surfaces
,”
Comput. Aided Geom. Des.
,
17
(
1
), pp.
83
100
.
28.
Warkentin
,
A.
,
Ismail
,
F.
, and
Bedi
,
S.
, 2000, “
Comparison Between Multi-Point and Other 5-Axis Tool Position Strategies
,”
Int. J. Mach. Tools Manuf.
,
40
(
2
), pp.
185
208
.
29.
Engeli
,
M.
,
Waldvogel
,
J.
, and
Schnider
,
T.
, 2002, “
Method for Processing Work Pieces by Removing Material
,” U.S. Patent No. US 6 485 236[P].
30.
Gray
,
P.
,
Bedi
,
S.
, and
Ismail
,
F.
, 2003, “
Rolling Ball Method for 5-Axis Surface Machining
,”
Comput.-Aided Des.
,
35
(
4
), pp.
347
357
.
31.
Gray
,
P.
,
Bedi
,
S.
, and
Ismail
,
F.
, 2005, “
Arc-Intersect Method for 5-Axis Tool Positioning
,”
Comput.-Aided Des.
,
37
(
7
), pp.
663
674
.
32.
Gray
,
P.
,
Ismail
,
F.
, and
Bedi
,
S.
, 2007, “
Arc-Intersect Method for 31122-Axis Tool Paths on a 5-Axis Machine
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
182
190
.
You do not currently have access to this content.