Machining induces severe plastic deformation (SPD) in the chip and on the surface to stimulate dramatic microstructural transformations which can often result in a manufactured component with a fine-grained surface. The aim of this paper is to study the one-to-one mappings between the thermomechanics of deformation during chip formation and an array of resulting microstructural characteristics in terms of central deformation parameters–strain, strain-rate, temperature, and the corresponding Zener–Hollomon (ZH) parameter. Here, we propose a generalizable rate-strain-microstructure (RSM) framework for relating the deformation parameters to the resulting deformed grain size and interface characteristics. We utilize Oxley’s model to calculate the strain and strain-rate for a given orthogonal machining condition which was also validated using digital imaging correlation-based deformation field characterization. Complementary infrared thermography in combination with a modified-Oxley’s analysis was utilized to characterize the temperature in the deformation zone where the SPD at high strain-rates is imposed. These characterizations were utilized to delineate a suitable RSM phase-space composed of the strain as one axis and the ZH parameter as the other. Distinctive one-to-one mappings of various microstructures corresponding to an array of grain sizes and grain boundary distributions onto unique subspaces of this RSM space are shown. Building on the realization that the microstructure on machined surfaces is closely related to the chip microstructure derived from the primary deformation zone, this elucidation is expected to offer a reliable approach for controlling surface microstructures from orthogonal machining.

References

1.
Cai
,
J.
,
Shekhar
,
S.
,
Wang
,
J.
, and
Shankar
,
M. R.
, 2009, “
Nanotwinned Microstructures From Low Stacking Fault Energy Brass by High-Rate Severe Plastic Deformation
,”
Scr. Mater.
,
60
(
8
), pp.
599
602
.
2.
Lee
,
S. G.
,
Hwang
,
J. H.
,
Shankar
,
M. R.
,
Chandrasekar
,
S.
, and
Compton
,
W. D.
, 2006, “
Large Strain Deformation Field in Machining
,”
Metall. Mater. Trans. A
,
37
(
5
), pp.
1633
1643
.
3.
Swarninathan
,
S.
,
Shankar
,
M. R.
,
Lee
,
S.
,
Hwang
,
J.
,
King
,
A. H.
,
Kezar
,
R. F.
,
Rao
,
B. C.
,
Brown
,
T. L.
,
Chandrasekar
,
S.
,
Compton
,
W. D.
, and
Trumble
,
K. P.
, 2005, “
Large Strain Deformation and Ultra-Fine Grained Materials by Machining
,”
Mater. Sci. Eng., A.
,
410
, pp.
358
363
.
4.
Huang
,
C.
,
Murthy
,
T. G.
,
Shankar
,
M. R.
,
M’saoubi
,
R.
, and
Chandrasekar
,
S.
, 2008, “
Temperature Rise in Severe Plastic Deformation of Titanium at Small Strain-Rates
,”
Scr. Mater.
,
58
(
8
), pp.
663
666
.
5.
Adibi-Sedeh
,
A. H.
,
Madhavan
,
V.
, and
Bahr
,
B.
, 2003, “
Extension of Oxley’s Analysis of Machining to Use Different Material Models
,”
Trans. ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
656
666
.
6.
Calistes
,
R.
,
Swaminathan
,
S.
,
Murthy
,
T. G.
,
Huang
,
C.
,
Saldana
,
C.
,
Shankar
,
M. R.
, and
Chandrasekar
,
S.
, 2009, “
Controlling Gradation of Surface Strains and Nanostructuring by Large-Strain Machining
,”
Scr. Mater.
,
60
(
1
), pp.
17
20
.
7.
Oxley
,
P. L. B.
, 1989,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood Limited (A division of John Wiley & Sons)
,
Chichester
.
8.
Shankar
,
M. R.
,
Rao
,
B. C.
,
Lee
,
S.
,
Chandrasekar
,
S.
,
King
,
A. H.
, and
Compton
,
W. D.
, 2006, “
Severe Plastic Deformation (SPD) of Titanium at near-Ambient Temperature
,”
Acta Mater.
,
54
(
14
), pp.
3691
3700
.
9.
Amouyal
,
Y.
,
Divinski
,
S. V.
,
Klinger
,
L.
, and
Rabkin
,
E.
, 2008, “
Grain Boundary Diffusion and Recrystallization in Ultrafine Grain Copper Produced by Equal Channel Angular Pressing
,”
Acta Mater.
,
56
(
19
), pp.
5500
5513
.
10.
Kawasaki
,
M.
,
Horita
,
Z.
, and
Langdon
,
T. G.
, 2009, “
Microstructural Evolution in High Purity Aluminum Processed by ECAP
,”
Mater. Sci. Eng., A.
,
524
(
1–2
), pp.
143
150
.
11.
Kuzel
,
R.
,
Janecek
,
M.
,
Matej
,
Z.
,
Cizek
,
J.
,
Dopita
,
M.
, and
Srba
,
O.
, 2010, “
Microstructure of Equal-Channel Angular Pressed Cu and Cu-Zr Samples Studied by Different Methods
,”
Metall. Mater. Trans. A
,
41
, pp.
1174
1190
.
12.
Shekhar
,
S.
,
Cai
,
J.
,
Lee
,
S.
,
Wang
,
J.
, and
Shankar
,
M. R.
, 2009, “
How Strains and Strain-Rates Are Accommodated by Dislocations and Twins During Chip Formation by Machining
,”
Transactions of North American Manufacturing Research Institute/Society of Manufacturing Engineers (NAMRI/SME)
,
37
, pp.
637
644
.
13.
Gupta
,
R. K.
,
Raman
,
R. K. S.
, and
Koch
,
C. C.
, 2010, “
Fabrication and Oxidation Resistance of Nanocrystalline Fe10cr Alloy
,”
J. Mater. Sci.
,
45
(
17
), pp.
4884
4888
.
14.
Hoog
,
C. O.
,
Birbilis
,
N.
, and
Estrin
,
Y.
, 2008, “
Corrosion of Pure Mg as a Function of Grain Size and Processing Route
,”
Adv. Eng. Mater.
,
10
(
6
), pp.
579
582
.
15.
Jeelani
,
S.
, and
Scott
,
M. A.
, 1988, “
How Surface Damage Removal Affects Fatigue Life
,”
Int. J. Fatigue
,
10
(
4
), pp.
257
260
.
16.
Misra
,
R. D. K.
,
Thein-Han
,
W. W.
,
Pesacreta
,
T. C.
,
Hasenstein
,
K. H.
,
Somani
,
M. C.
, and
Karjalainen
,
L. P.
, 2009, “
Favorable Modulation of Pre-Osteoblast Response to Nanograined/Ultrafine-Grained Structures in Austenitic Stainless Steel
,”
Adv. Mater.
,
21
(
12
), pp.
1280
1285
.
17.
Misra
,
R. D. K.
,
Thein-Han
,
W. W.
,
Pesacreta
,
T. C.
,
Hasenstein
,
K. H.
,
Somani
,
M. C.
, and
Karjalainen
,
L. P.
, 2009, “
Cellular Response of Preosteoblasts to Nanograined/Ultrafine-Grained Structures
,”
Acta Biomater.
,
5
(
5
), pp.
1455
1467
.
18.
Raman
,
R. K. S.
, and
Gupta
,
R. K.
, 2009, “
Oxidation Resistance of Nanocrystalline Vis-a-Vis Microcrystalline Fe-Cr Alloys
,”
Corros. Sci.
,
51
(
2
), pp.
316
321
.
19.
Roland
,
T.
,
Retraint
,
D.
,
Lu
,
K.
, and
Lu
,
J.
, 2006, “
Fatigue Life Improvement Through Surface Nanostructuring of Stainless Steel by Means of Surface Mechanical Attrition Treatment
,”
Scr. Mater.
,
54
(
11
), pp.
1949
1954
.
20.
Saldana
,
C.
,
Swaminathan
,
S.
,
Brown
,
T. L.
,
Moscoso
,
W.
,
Mann
,
J. B.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
, 2010, “
Unusual Applications of Machining: Controlled Nanostructuring of Materials and Surfaces
,”
Trans. ASME J. Manuf. Sci. Eng.
,
132
(
3
),
030908
.
21.
Tao
,
N. R.
,
Tong
,
W. P.
,
Wang
,
Z. B.
,
Wang
,
W.
,
Sui
,
M. L.
,
Lu
,
J.
, and
Lu
,
K.
, 2003, “
Mechanical and Wear Properties of Nanostructured Surface Layer in Iron Induced by Surface Mechanical Attrition Treatment
,”
J. Mater. Sci. Technol.
,
19
(
6
), pp.
563
566
.
22.
Baretzky
,
B.
,
Baro
,
M. D.
,
Grabovetskaya
,
G. P.
,
Gubicza
,
J.
,
Ivanov
,
M. B.
,
Kolobov
,
Y. R.
,
Langdon
,
T. G.
,
Lendvai
,
J.
,
Lipnitskii
,
A. G.
,
Mazilkin
,
A. A.
,
Nazarov
,
A. A.
,
Nogues
,
J.
,
Ovidko
,
I. A.
,
Protasova
,
S. G.
,
Raab
,
G. I.
,
Revesz
,
A.
,
Skiba
,
N. V.
,
Sort
,
J.
,
Starink
,
M. J.
,
Straumal
,
B. B.
,
Surinach
,
S.
,
Ungar
,
T.
, and
Zhilyaev
,
A. P.
, 2005, “
Fundamentals of Interface Phenomena in Advanced Bulk Nanoscale Materials
,”
Rev. Adv. Mater. Sci.
,
9
(
1
), pp.
45
108
.
23.
Hofler
,
H. J.
,
Averback
,
R. S.
,
Hahn
,
H.
, and
Gleiter
,
H.
, 1993, “
Diffusion of Bismuth and Gold in Nanocrystalline Copper
,”
J. Appl. Phys.
,
74
(
6
), pp.
3832
3839
.
24.
Childs
,
T. H. C.
,
Maekawa
,
K.
,
Obikawa
,
T.
, and
Yamanae
,
Y.
, 2000,
Metal Machining: Theory and Application
,
Arnold Publishers
,
London
.
25.
Velasquez
,
J. D. P.
,
Tidu
,
A.
,
Bolle
,
B.
,
Chevrier
,
P.
, and
Fundenberger
,
J. J.
, 2010, “
Sub-Surface and Surface Analysis of High Speed Machined Ti-6al-4v Alloy
,”
Mater. Sci. Eng., A
,
527
(
10–11
), pp.
2572
2578
.
26.
Brown
,
T. L.
,
Saldana
,
C.
,
Murthy
,
T. G.
,
Mann
,
J. B.
,
Guo
,
Y.
,
Allard
,
L. F.
,
King
,
A. H.
,
Compton
,
W. D.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
, 2009, “
A Study of the Interactive Effects of Strain, Strain Rate and Temperature in Severe Plastic Deformation of Copper
,”
Acta Mater.
,
57
(
18
), pp.
5491
5500
.
27.
Zener
,
C.
, and
Hollomon
,
J. H.
, 1944, “
Effect of Strain Rate Upon Plastic Flow of Steel
,”
J. Appl. Phys.
,
15
, pp.
22
33
.
28.
Nes
,
E.
,
Marthinsen
,
K.
, and
Brechet
,
Y.
, 2002, “
On the Mechanisms of Dynamic Recovery
,”
Scr. Mater.
,
47
(
9
), pp.
607
611
.
29.
Nes
,
E.
,
Pettersen
,
T.
, and
Marthinsen
,
K.
, 2000, “
On the Mechanisms of Work Hardening and Flow-Stress Saturation
,”
Scr. Mater.
,
43
(
1
), pp.
55
62
.
30.
Swaminathan
,
S.
,
Shankar
,
M. R.
,
Rao
,
B. C.
,
Compton
,
W. D.
,
Chandrasekar
,
S.
,
King
,
A. H.
, and
Trumble
,
K. P.
, 2007, “
Severe Plastic Deformation (SPD) and Nanostructured Materials by Machining
,”
J. Mater. Sci.
,
42
(
5
), pp.
1529
1541
.
31.
Humphreys
,
F. J.
, and
Hatherly
,
M.
, 2004,
Recrystallization and Related Annealing Phenomena
,
Elsevier
,
New York
.
32.
Jata
,
K. V.
, and
Semiatin
,
S. L.
, 2000, “
Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum Alloys
,”
Scr. Mater.
,
43
(
8
), pp.
743
749
.
33.
Buffa
,
G.
,
Hua
,
J.
,
Shivpuri
,
R.
, and
Fratini
,
L.
, 2006, “
Design of the Friction Stir Welding Tool Using the Continuum Based Fem Model
,”
Mater. Sci. Eng., A.
,
419
(
1–2
), pp.
381
388
.
34.
Bingert
,
J. F.
, 2003, “
Transverse Texture and Microstructure Gradients in Friction-Stir Welded 2519 Aluminum
,”
Proceedings of 4th Internationa Symposium on Friction Stir Welding
,
Park City, UT.
35.
Gottstein
,
G.
,
Zabardjadi
,
D.
, and
Mecking
,
H.
, 1979, “
Dynamic Recrystallization in Tension-Deformed Copper Single Crystals
,”
Metal Sci.
,
13
(
3–4
), pp.
223
227
.
36.
Montheillet
,
F.
, and
Le Coze
,
J.
, 2002, “
Influence of Purity on the Dynamic Recrystallization of Metals and Alloys
,”
Phys. Status Solidi A
,
189
(
1
), pp.
51
58
.
37.
Xiao
,
G. H.
,
Tao
,
N. R.
, and
Lu
,
K.
, 2008, “
Effects of Strain, Strain Rate and Temperature on Deformation Twinning in a Cu-Zn Alloy
,”
Scr. Mater.
,
59
(
9
), pp.
975
978
.
38.
Mishra
,
A.
,
Kad
,
B. K.
,
Gregori
,
F.
, and
Meyers
,
M. A.
, 2007, “
Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis
,”
Acta Mater.
,
55
(
1
), pp.
13
28
.
39.
Oxley
,
P. L. B.
, and
Hasting
,
W. F.
, 1977, “
Predicting the Strain Rate in the Zone of Intense Shear in Which the Chip Is Formed in Machining From the Dynamic Flow Stress Properties of the Work Material and the Cutting Conditions
,”
Proc. R. Soc. London, Ser. A
,
356
(
1686
), pp.
395
410
.
40.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983,
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,
The Hague
,
The Netherlands
, pp.
541
547
.
41.
White
,
G. K.
, and
Collocott
,
S. J.
, 1984, “
Heat Capacity of Reference Materials: Cu and W
,”
J. Phys. Chem. Ref. Data
,
13
(
4
), pp.
1251
1258
.
42.
Weiner
,
J. H.
, 1955, “
Shear Plane Temperature Distribution in Orthogonal Cutting
,”
Trans. ASME
,
77
(
8
), pp.
1331
1338
.
43.
Andrade
,
U.
,
Meyers
,
M. A.
,
Vecchio
,
K. S.
, and
Chokshi
,
A. H.
, 1994, “
Dynamic Recrystallization in High-Strain, High-Strain-Rate Plastic-Deformation of Copper
,”
Acta Metall. Mater.
,
42
(
9
), pp.
3183
3195
.
44.
Wang
,
Y. M.
,
Chen
,
M. W.
,
Zhou
,
F. H.
, and
Ma
,
E.
, 2002, “
High Tensile Ductility in a Nanostructured Metal
,”
Nature
,
419
(
6910
), pp.
912
915
.
45.
Shekhar
,
S.
,
Cai
,
J.
,
Wang
,
J.
, and
Shankar
,
M. R.
, 2009, “
Multimodal Ultrafine Grain Size Distributions From Severe Plastic Deformation at High Strain Rates
,”
Mater. Sci. Eng., A
,
527
(
1–2
), pp.
187
191
.
46.
Zhao
,
Y. H.
,
Topping
,
T.
,
Bingert
,
J. F.
,
Thornton
,
J. J.
,
Dangelewicz
,
A. M.
,
Li
,
Y.
,
Liu
,
W.
,
Zhu
,
Y. T.
,
Zhou
,
Y. Z.
, and
Lavernia
,
E. L.
, 2008, “
High Tensile Ductility and Strength in Bulk Nanostructured Nickel
,”
Adv. Mater.
,
20
(
16
), pp.
3028
3033
.
47.
Valiev
,
R. Z.
,
Alexandrov
,
I. V.
,
Zhu
,
Y. T.
, and
Lowe
,
T. C.
, 2002, “
Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation
,”
J. Mater. Res.
,
17
(
1
), pp.
5
8
.
48.
Witkin
,
D.
,
Lee
,
Z.
,
Rodriguez
,
R.
,
Nutt
,
S.
, and
Lavernia
,
E.
, 2003, “
Al-Mg Alloy Engineered With Bimodal Grain Size for High Strength and Increased Ductility
,”
Scr. Mater.
,
49
(
4
), pp.
297
302
.
49.
Han
,
B. Q.
,
Lee
,
Z.
,
Witkin
,
D.
,
Nutt
,
S.
, and
Lavernia
,
E. J.
, 2005, “
Deformation Behavior of Bimodal Nanostructured 5083 Al Alloys
,”
Metal. Mater. Trans. A
,
36
(
4
), pp.
957
965
.
50.
Sevillano
,
J. G.
, and
Aldazabal
,
J.
, 2004, “
Ductilization of Nanocrystalline Materials for Structural Applications
,”
Scr. Mater.
,
51
(
8
), pp.
795
800
.
51.
Zhao
,
Y. H.
,
Bingert
,
J. E.
,
Liao
,
X. Z.
,
Cui
,
B. Z.
,
Han
,
K.
,
Sergueeva
,
A. V.
,
Mukherjee
,
A. K.
,
Valiev
,
R. Z.
,
Langdon
,
T. G.
, and
Zhu
,
Y. T. T.
, 2006, “
Simultaneously Increasing the Ductility and Strength of Ultra-Fine-Grained Pure Copper
,”
Adv. Mater.
,
18
(
22
), pp.
2949
2953
.
52.
Bokstein
,
B.
,
Ivanov
,
V.
,
Oreshina
,
O.
,
Peteline
,
A.
, and
Peteline
,
S.
, 2001, “
Direct Experimental Observation of Accelerated Zn Diffusion Along Triple Junctions in Al
,”
Mater. Sci. Eng., A
,
302
(
1
), pp.
151
153
.
53.
Shekhar
,
S.
, and
King
,
A. H.
, 2008, “
Strain Fields and Energies of Grain Boundary Triple Junctions
,”
Acta Mater.
,
56
(
19
), pp.
5728
5736
.
54.
Shvindlerman
,
L. S.
, and
Gottstein
,
G.
, 2001, “
Grain Boundary and Triple Junction Migration
,”
Mater. Sci. Eng., A
,
302
(
1
), pp.
141
150
.
55.
Huang
,
Y.
, and
Humphreys
,
F. J.
, 1999, “
Measurements of Grain Boundary Mobility During Recrystallization of a Single-Phase Aluminium Alloy
,”
Acta Mater.
,
47
(
7
), pp.
2259
2268
.
56.
Gottstein
,
G.
,
King
,
A. H.
, and
Shvindlerman
,
L. S.
, 2000, “
The Effect of Triple-Junction Drag on Grain Growth
,”
Acta Mater.
,
48
(
2
), pp.
397
403
.
You do not currently have access to this content.