Fouling mechanisms and models for flux decline are investigated with a three-dimensional simulation of the tortuous, verisimilar geometry of an α-alumina microfilter. Reconstruction of the three-dimensional geometry was accomplished from two-dimensional cross-sectional cuts. A wall collision model and a particle trapping model are developed for the investigation of fouling mechanisms. The reconstructed geometry and the two models were used in computational fluid dynamics to simulate metalworking colloidal particles travelling through and becoming trapped in the tortuous pore paths of a microfilter. Results reveal sharp flux decline initiating from partial pore blocking and subdued flux decline transitioning to cake layer development with steady-state flow. This flow behavior is in agreement with experimental data from earlier studies. The inclusion of the wall collision model and particle trapping model enabled the revelation of cake layer development as a fouling mechanism. Additional simulations of microfilters at different particle size distributions were conducted and discussed.

References

1.
Zhao
,
F.
,
Clarens
,
A.
, and
Skerlos
,
S. J.
,
2006
, “
Optimization of Metalworking Fluid Microemulsion Surfactant Concentrations for Microfiltration Recycling
,”
Environ. Sci. Technol.
,
41
(
3
), pp.
1016
1023
.10.1021/es0608038
2.
Rajagopalan
,
K.
,
Rusk
,
T.
, and
Dianovsky
,
M.
,
2004
, “
Purification of Semi-Synthetic Metalworking Fluids by Microfiltration
,”
Tribol Lubr. Technol.
,
60
(
8
), pp.
38
44
.
3.
Ham
,
S.
,
Wentz
,
J. E.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2010
, “
The Impact of Surface Forces on Particle Flow and Membrane Fouling in the Microfiltration of Metalworking Fluids
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011006
.10.1115/1.4000714
4.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
,
2005
, “
Experimental Investigation of Membrane Fouling Due to Microfiltration of Semi-Synthetic Metalworking Fluids
,”
Trans. NAMRI/SME
,
33
, pp.
281
289
.
5.
Belfort
,
G.
,
Davis
,
R. H.
, and
Zydney
,
A. L.
,
1994
, “
The Behavior of Suspensions and Macromolecular Solutions in Crossflow Microfiltration
,”
J. Membr. Sci.
,
96
(
1-2
), pp.
1
58
.10.1016/0376-7388(94)00119-7
6.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Angspatt
,
V. D.
,
2000
, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 2: Analysis of Underlying Mechanisms
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
746
752
.10.1115/1.1286131
7.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Angspatt
,
V. D.
,
2000
, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 1: Experimental Investigation of Flux Decline
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
739
745
.10.1115/1.1286132
8.
Kim
,
M.-M.
, and
Zydney
,
A. L.
,
2004
, “
Effect of Electrostatic, Hydrodynamic, and Brownian Forces on Particle Trajectories and Sieving in Normal Flow Filtration
,”
J. Colloid Interface Sci.
,
269
(
2
), pp.
425
431
.10.1016/j.jcis.2003.08.004
9.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
,
2007
, “
Development of a Novel Metalworking Fluid Engineered for Use With Microfiltration Recycling
,”
J. Tribol.
,
129
(
1
), pp.
135
142
.10.1115/1.2401207
10.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
,
2008
, “
Dynamic Simulations of Alumina Membrane Fouling From Recycling of Semisynthetic Metalworking Fluids
,”
ASME J. Manuf. Sci. Eng.
,
130
(
6
), p.
061015
.10.1115/1.2976149
11.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
,
2008
, “
Partial Pore Blocking in Microfiltration Recycling of a Semisynthetic Metalworking Fluid
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
041014
.10.1115/1.2953234
12.
Kim
,
M.-M.
, and
Zydney
,
A. L.
,
2005
, “
Particle-Particle Interactions During Normal Flow Filtration: Model Simulations
,”
Chem. Eng. Sci.
,
60
, pp.
4073
4082
.10.1016/j.ces.2005.01.029
13.
Ham
,
S.
,
Wentz
,
J. E.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2011
, “
Three-Dimensional Fluid Dynamic Model for the Prediction of Microfiltration Membrane Fouling and Flux Decline
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041001
.10.1115/1.4003791
14.
Inkson
,
B. J.
,
Wu
,
H. Z.
,
Steer
,
T.
, and
Mobus
,
G.
,
2000
, “
3D Mapping of Subsurface Cracks in Alumina Using FIB
,”
MRS Proceedings
,
649
, p.
Q7.7
.10.1557/PROC-649-Q7.7
15.
Madou
,
J. M.
,
2002
,
Fundamentals of Microfabrication: The Science of Miniaturization
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
16.
Nagata
,
N.
,
Herouvis
,
K. J.
,
Dziewulski
,
D. M.
, and
Belfort
,
G.
,
1989
, “
Cross-Flow Membrane Microfiltration of a Bacteriol Fermentation Broth
,”
Biotechnol. Bioeng.
,
34
(
4
), pp.
447
466
.10.1002/bit.260340405
You do not currently have access to this content.