This paper presents a novel approach for obtaining thermal data from the close vicinity (70–700 μm) of the tool-workpiece interface while machining hardened steel. Arrays of microthin film C-type thermocouples with a junction size of 5 μm × 5 μm were fabricated by standard microfabrication methods and have been successfully embedded into polycrystalline cubic boron nitride (PCBN) using a diffusion bonding technique. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were performed to examine material interactions at the bonding interface in order to determine optimal bonding parameters. Static and dynamic sensor performances have been characterized. The sensors exhibit excellent linearity up to 1300 °C, fast rise time of 150 ns, and sensitivity of ∼19 μV/ °C. The PCBN inserts instrumented with embedded thin film C-type thermocouples were successfully applied to measure internal tool temperatures as close as 70 μm to the cutting edge while machining hardened steel workpieces at industrially relevant cutting conditions. Correlations between temperature and cutting parameters have been established. The embedded microthin film sensor array provided unprecedented temporal and spatial resolution as well as high accuracy for microscale transient tool-internal temperature field measurements. Tool-internal temperature maps were generated from acquired data. In the frequency domain, obtained thermal data indicated the onset of regenerative machining chatter earlier and more effective than conventional force measurement by dynamometer.

References

1.
Tönshoff
,
H. K.
, and
Inasaki
,
I.
,
2001
,
Sensors in Manufacturing
Wiley-VCH
,
New York
.
2.
Byrne
,
G.
,
Dornfeld
,
D.
,
Inasaki
,
I.
,
Ketteler
,
G.
,
Konig
,
W.
, and
Teti
,
R.
,
1995
, “
Tool Condition Monitoring (TCM)—The Status of Research and Industrial Applications
,”
CIRP Ann.
,
44
, pp.
541
567
.10.1016/S0007-8506(07)60503-4
3.
Dornfeld
,
D. A.
,
Lee
,
Y.
, and
Chang
,
A.
,
2003
, “
Monitoring of Ultraprecision Machining Processes
,”
Int. J. Adv. Manuf. Technol.
,
21
, pp.
571
578
.10.1007/s00170-002-1294-2
4.
Liang
,
S. Y.
,
Hecker
,
R. L.
, and
Landers
,
R. G.
,
2004
, “
Machining Process Monitoring and Control: The State-of-the-Art
,”
ASME J. Manuf. Sci. Eng.
,
126
, pp.
297
310
.10.1115/1.1707035
5.
Udd
,
E.
,
1995
,
Fiber Optic Smart Structures
,
Wiley
,
New York
.
6.
Du
,
H.
, and
Klamecki
,
B. E.
,
1999
, “
Force Sensors Embedded in Surfaces for Manufacturing and Other Tribological Process Monitoring
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
739
748
.10.1115/1.2833131
7.
Hautamaki
,
C.
,
Zurn
,
S.
,
Mantell
,
S. C.
, and
Polla
,
D. L.
,
1999
, “
Experimental Evaluation of MEMS Strain Sensors Embedded in Composites
,”
J. Microelectromech. Syst.
,
8
, pp.
272
279
.10.1109/84.788631
8.
Lawrence
,
C. M.
,
1997
, “
Embedded Fiber Optic Strain Sensors for Process Monitoring of Composites
,” Ph.D. thesis,
Stanford University
, Stanford, CA.
9.
Hautamaki
,
C.
,
Zurn
,
S.
,
Mantell
,
S. C.
, and
Polla
,
D. L.
,
2000
, “
Embedded Microelectromechanical Systems (MEMS) for Measuring Strain in Composites
,”
J. Reinf. Plast. Compos.
,
19
, pp.
268
277
.10.1106/JFAN-201N-FXL2-R94U
10.
Krantz
,
D. G.
, and
Belk
,
J. H.
,
1997
, “
Remotely Queried Wireless Embedded Microsensors in Composites
,”
Proc. SPIE
,
3044
, pp.
219
226
.10.1117/12.274666
11.
Cheng
,
X.
,
Datta
,
A.
,
Choi
,
H.
,
Zhang
,
X.
, and
Li
,
X.
,
2007
, “
Study on Embedding and Integration of Microsensors Into Metal Structures for Manufacturing Applications
,”
ASME J. Manuf. Sci. Eng.
,
129
, pp.
416
424
.10.1115/1.2515456
12.
Zhang
,
X.
,
Choi
,
H.
, and
Li
,
X.
,
2006
, “
Design, Fabrication and Characterization of Metal Embedded Thin Film Thermocouples With Various Film Thickness and Junction Sizes
,”
J. Micromech. Microeng.
,
16
, pp.
900
905
.10.1088/0960-1317/16/5/004
13.
Datta
,
A.
,
Choi
,
H.
, and
Li
,
X.
,
2006
, “
Batch Fabrication and Characterization of Micro-Thin-Film Thermocouples Embedded in Metal
,”
J. Electrochem. Soc.
,
153
, pp.
H89
H93
.10.1149/1.2179218
14.
Choi
,
H.
,
Datta
,
A.
,
Cheng
,
X.
, and
Li
,
X.
,
2006
, “
Microfabrication and Characterization of Metal-Embedded Thin-Film Thermomechanical Microsensors for Applications in Hostile Manufacturing Environments
,”
IEEE/ASME J. Microelectromech. Syst.
,
15
, pp.
322
329
.10.1109/JMEMS.2006.872235
15.
Choi
,
H.
,
Konishi
,
H.
,
Xu
,
H.
, and
Li
,
X.
,
2007
, “
Embedding of Micro Thin Film Strain Sensors in Sapphire by Diffusion Bonding
,”
J. Micromech. Microeng.
,
17
(
11
), pp.
2248
2252
.10.1088/0960-1317/17/11/011
16.
Werschmoeller
,
D.
,
2010
, “
Measurement of Transient Tool Internal Temperature Fields by Novel Micro Thin Film Sensors Embedded in Polycrystalline Cubic Boron Nitride Cutting Inserts
,” Ph.D. thesis,
University of Wisconsin-Madison, Madison, WI
.
17.
Liu
,
C. R.
, and
Mittal
,
S.
,
1996
, “
Single-Step Superfinish Hard Machining: Feasibility and Feasible Cutting Conditions
,”
Rob. Comput.-Integr. Manuf.
,
12
(
1
), pp.
15
27
.10.1016/0736-5845(95)00029-1
18.
Tönshoff
,
H. K.
,
Arendt
,
C.
, and
Amor
,
R. B.
,
2000
, “
Cutting of Hardened Steel
,”
CIRP Ann. - Manuf. Technol.
,
49
, p.
547
566
.10.1016/S0007-8506(07)63455-6
19.
Kazakov
,
N. F.
,
1985
,
Diffusion Bonding of Materials
,
Pergamon
,
New York
.
20.
Ren
,
X. J.
,
Yang
,
Q. X.
,
James
,
R. D.
, and
Wang
,
L.
,
2004
, “
Cutting Temperatures in Hard Turning Chromium Hardfacings With PCBN Tooling
,”
J. Mater. Process. Technol.
,
147
(
1
), pp.
38
44
.10.1016/j.jmatprotec.2003.10.013
21.
Usui
,
E.
,
Hirota
,
A.
, and
Masuko
,
M.
,
1978
, “
Analytical Prediction of Three Dimensional Cutting Process—Part 1: Basic Cutting Model and Energy Approach
,”
ASME J. Eng. Industry
,
100
(
2
), pp.
222
228
.10.1115/1.3439413
You do not currently have access to this content.