The failure mechanisms encountered during the machining of carbon nanotube (CNT) polymer composites are primarily governed by the strength of the CNT–polymer interface. Therefore, the interface should be explicitly modeled in microstructure-level machining simulations for these composites. One way of effectively capturing the behavior of this interface is by the use of a cohesive zone model (CZM) that is characterized by two parameters, viz., interfacial strength and interfacial fracture energy. The objective of this study is to estimate these two CZM parameters of the interface using an inverse iterative finite element (FE) approach. A microstructure-level 3D FE model for nanoindentation simulation has been developed where the composite microstructure is modeled using three distinct phases, viz., the CNT, the polymer, and the interface. The unknown CZM parameters of the interface are then determined by minimizing the root mean square (RMS) error between the simulated and the experimental nanoindentation load–displacement curves for a 2 wt. % CNT–polyvinyl alcohol (PVA) composite sample at room temperature and quasi-static strain state of up to 0.04 s−1, and then validated using the 1 wt. % and 4 wt. % CNT–PVA composites. The results indicate that for well-dispersed and aligned CNT–PVA composites, the CZM parameters of the interface are independent of the CNT loading in the weight fraction range of 1–4%.

References

1.
Lu
,
J. P.
,
1997
, “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Phys. Rev. Lett.
,
79
, pp.
1297
1300
.10.1103/PhysRevLett.79.1297
2.
Peng
,
B.
,
Locascio
,
M.
,
Zapol
,
P.
,
Li
,
S.
,
Mielke
,
S. L.
,
Schatz
,
G. C.
, and
Espinosa
,
H. D.
,
2008
, “
Measurements of Near-Ultimate Strength for Multiwalled Carbon Nanotubes and Irradiation-Induced Crosslinking Improvements
,”
Nat. Nanotechnol.
,
3
, pp.
626
631
.10.1038/nnano.2008.211
3.
Stewart
,
R.
,
2004
, “
Nanocomposites: Microscopic Reinforcement Boost Polymer Performance
,”
Plast. Eng.
,
60
, pp.
22
29
.
4.
Endo
,
M.
,
Hayashi
,
T.
,
Kim
,
Y. A. K.
, and
Muramatsu
,
H.
,
2006
, “
Development and Application of Carbon Nanotubes
,”
Jpn. J. Appl. Phys.
,
45
, pp.
4883
4892
.10.1143/JJAP.45.4883
5.
Eklund
,
P.
,
Ajayan
,
P.
,
Blackmon
,
R.
,
Hart
,
A. J.
,
Kong
,
J.
,
Pradhan
,
B.
,
Rao
,
A.
, and
Rinzler
,
A.
,
2007
, “
International Assessment of Research and Development on Carbon Nanotubes Manufacturing and Application
World Technology Evaluation Center (WTEC) Panel Report
.
6.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
Microstructure–Level Machining Simulation of Carbon Nanotube–Reinforced Polymer Composites–Part I: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
031114
.10.1115/1.2917378
7.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
Microstructure–Level Machining Simulation of Carbon Nanotube–Reinforced Polymer Composites—Part II: Model Interpretation and Application
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
031115
.10.1115/1.2927431
8.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
A Microstructure–Level Material Model for Simulating the Machining of Carbon Nanotube–Reinforced Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
031110
.10.1115/1.2917564
9.
Samuel
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
K. J.
,
2005
, “
Experimental Investigation of the Machinability of Polycarbonate Reinforced with Multi-Walled Carbon Nanoutbes
,”
ASME J. Manuf. Sci. Eng.
,
128
, pp.
465
473
.10.1115/1.2137753
10.
Samuel
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
K. J.
,
2010
, “
Effect of Microstructural Parameters on the Machinability of Aligned Carbon Nanotube Composites
,”
ASME J. Manuf. Sci. Eng.
,
132
, p.
051012
.10.1115/1.4002495
11.
Ortiz
,
M.
, and
Pandolfi
,
A.
,
1999
, “
Finite–Deformation Irreversible Cohesive Elements for Three-Dimensional Crack-Propagation Analysis
,”
Int. J. Numer. Methods Eng.
,
44
, pp.
1267
1282
.10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
12.
Camanho
,
P. P.
,
Davila
,
C. G.
, and
de Moura
,
M. F.
,
2003
, “
Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials
,”
J. Compos. Mater.
,
37
, pp.
1415
1438
.10.1177/0021998303034505
13.
Golestanina
,
H.
, and
Shojaie
,
M.
,
2010
, “
Numerical Characterization of CNT-Based Polymer Composites Considering Interface Effects
,”
Comput. Mater. Sci.
,
50
, pp.
731
736
.10.1016/j.commatsci.2010.10.003
14.
Shokrieh
,
M. M.
, and
Rafiee
,
R.
,
2010
, “
On the Tensile Behavior of an Embedded Carbon Nanotube in Polymer Matrix With Non-Bond Interphase Region
,”
Compos. Struct.
,
92
, pp.
647
652
.10.1016/j.compstruct.2009.09.033
15.
Strus
,
M. C.
,
Cano
,
C. I.
,
Pipes
,
R. B.
,
Nguyen
,
C. V.
,
Raman
,
A.
,
2009
, “
Interfacial Energy Between Carbon Nanotubes and Polymers Measured From Nanoscale Peel Test in the Atomic Force Microscope
,”
Compos. Sci. Technol.
,
69
, pp.
1580
1586
.10.1016/j.compscitech.2009.02.026
16.
Frankland
,
S. J. V.
,
Harik
,
V. M.
,
Odegard
,
G. M.
,
Brenner
,
D. W.
, and
Gates
,
T. S.
,
2003
, “
The Stress-Strain Behavior of Polymer–Nanotube Composite from Molecular Dynamic Simulation
,”
Compos. Sci. Technol.
,
63
, pp.
1655
1661
.10.1016/S0266-3538(03)00059-9
17.
Cooper
,
C. A.
,
Cohen
,
S. R.
,
Barber
,
A. H.
, and
Wagner
,
H. D.
,
2002
, “
Detachment of Nanotube From Polymer Matrix
,”
Appl. Phys. Lett.
,
81
, pp.
3873
3875
.10.1063/1.1521585
18.
Liu
,
K.
,
VanLandingham
M. R.
, and
Ovaert
T. C.
,
2009
, “
Mechanical Characterization of Soft Viscoelastic Gels via Indentation and Optimization-Based Inverse Finite Element Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
2
, pp.
355
363
.10.1016/j.jmbbm.2008.12.001
19.
Pavia
,
M. C.
,
Zhou
,
B.
,
Fernando
K. A. S.
,
Lin
Y.
,
Kennedy
J. M.
, and
Sun
Y.-P.
,
2004
, “
Mechanical and Morphological Characterization of Polymer-Carbon Nanocomposites From Functionalized Carbon Nanotubes
,”
Carbon
,
42
, pp.
2849
2854
.10.1016/j.carbon.2004.06.031
20.
Zhao
,
B.
,
Wang
,
J.
,
Li
,
Z.
,
Liu
,
P.
,
Chen
,
D.
, Zhang Y.
2008
, “
Mechanical Strength Improvement of Polypropylene Threads Modified by PVA/CNT Composite Coatings
,”
Mater. Lett.
,
62
, pp.
4380
4382
.10.1016/j.matlet.2008.07.037
21.
Pradhan
,
B.
,
Kohlmeyer
R. R.
, and
Chen
J.
,
2010
, “
Fabrication of In-Plane Aligned Carbon Nanotube-Polymer Composite Thin Films
,”
Carbon
,
48
, pp.
217
222
.10.1016/j.carbon.2009.09.006
22.
Lichinchi
,
M.
, and
Lenardi
,
C.
,
1998
, “
Simulation of Berkovich Nanoindentation Experiments on Thin Films Using Finite Element Method
,”
Thin Solid Films
,
312
, pp.
240
248
.10.1016/S0040-6090(97)00739-6
23.
Yu
,
M. F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
,
2000
, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
,
287
, pp.
637
640
.10.1126/science.287.5453.637
24.
Hou
,
Y.
,
Tang
,
J.
,
Zhang
,
H.
,
Qian
,
C.
,
Feng
,
Y.
, and
Liu
,
J.
,
2009
, “
Functionalized Few-Walled Carbon Nanotubes for Mechanical Reinforcement of Polymeric Composites
,”
ACS Nano
,
3
, pp.
1057
1062
.10.1021/nn9000512
25.
Oliver
,
W. C.
, and
Pharr
,
G. M.
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
, pp.
1564
1583
.10.1557/JMR.1992.1564
26.
Lohnert
,
S.
, and
Wriggers
,
P.
,
2003
, “
Homogenization of Microheterogneous Materials Considering Interfacial Delamination at Finite Strains
,”
Tech. Mech.
,
23
, pp.
167
177
.
27.
Calzada
,
K. A.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
,
Samuel
,
J.
, and
Srivastava
,
A. K.
,
2011
, “
Modeling and Interpretation of Fiber Orientation-Based Failure Mechanisms in Machining of Carbon Fiber–Reinforced Polymer Composites
Trans. North Am. Manuf. Res. Inst. SME
,
39
, pp.
332
341
.
28.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
, pp.
1397
1434
.10.1016/0022-5096(94)90003-5
29.
van den Bosch
,
M. J.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
,
2006
, “
An Improved Description of the Exponential Xu and Needleman Cohesive Zone Law for Mixed-Mode Decohesion
,”
Eng. Fract. Mech.
,
73
, pp.
1220
1234
.10.1016/j.engfracmech.2005.12.006
30.
Wang
,
J.
,
Piechna
,
J.
,
Yume
,
J. A. O.
, and
Muller
,
N.
,
2012
, “
Stability Analysis in Wound Composite Material Axial Impeller
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
226
, pp.
1162
1172
.10.1177/0954406211420335
31.
McMinis
J.
,
Crombez
,
R.
,
Montalvo
,
E.
, and
Shen
,
W.
,
2007
, “
Determination of the Cross-Sectional Area of the Indenter in Nano-Indentation Test
,”
Phys. B: Condens. Matter
,
391
, pp.
118
123
.10.1016/j.physb.2006.09.006
You do not currently have access to this content.