Freeform surfaces, including the femoral components of knee prosthetics, present a significant challenge in manufacturing. The finishing process is often performed manually, which leads to surface finish variations. In the case of knee prosthetics, this can be a factor leading to accelerated wear of the polyethylene tibial component. The wear resistance of polyethylene components might be influenced by not only the roughness but also the lay of femoral component surfaces. This study applies magnetic abrasive finishing (MAF) for nanometer-scale finishing of cobalt chromium alloys, which are commonly used in knee prosthetics and other freeform components. Using flat disks as workpieces, this paper shows the dominant parameters for controlling the lay in MAF and demonstrates the feasibility of MAF to alter the lay while controlling the surface roughness. The manually finished disk surfaces (with roughness around 3 nm Sa), consisting of random cutting marks, were compared to MAF-produced surfaces (also with roughness around 3 nm Sa) with different lays. Tests using deionized water droplets show that the lay influences the wetting properties even if the surface roughness changes by no more than a nanometer. Surfaces with unidirectional cutting marks exhibit the least wettability, and increasing the cross-hatch angle in the MAF-produced surfaces increases the wettability. Surfaces consisting of short, intermittent cutting marks were the most wettable by deionized water.

References

1.
Kulawiec
,
A.
,
Kordonski
,
W.
, and
Gorodkin
,
S.
,
2012
, “
New Approaches to MRF in Optical Fabrication and Testing
,”
Imaging Applied Optics Technical Digest (online)
, Paper No. OM3D.3.
2.
Tricard
,
M.
,
Kordonski
,
W. I.
, and
Shorey
,
A. B.
,
2006
, “
Magnetorheological Jet Finishing of Conformal, Freeform and Steep Concave Optics
,”
Ann. CIRP
,
55
(
1
), pp.
309
312
.10.1016/S0007-8506(07)60423-5
3.
Kordonski
,
W. I.
, and
Golini
,
D.
,
1999
, “
Fundamentals of Magnetorheological Fluid Utilization in High Precision Finishing
,”
J. Intell. Mater. Syst. Struct.
,
10
, pp.
683
389
.10.1106/011M-CJ25-64QC-F3A6
4.
Harris
,
D.
,
2011
, “
History of Magnetorheological Finishing
,”
Proc. SPIE
, pp.
1
22
.
5.
Walker
,
D.
,
Beaucamp
,
A.
,
Dunn
,
C.
,
Freeman
,
R.
,
Marek
,
A.
,
McCavana
,
G.
,
Morton
,
R.
, and
Riley
,
D.
,
2004
,
First Results on Free-Form Polishing Using the Precessions Process
, Proc. ASPE Winter Conference: Freeform Optics, Design, Fabrication, Metrology, Assembly.
6.
Beaucamp
,
A.
,
Matsumoto
,
A.
, and
Namba
,
Y.
,
2010
, “Ultra-Precision Fluid Jet and Bonnet Polishing for Next Generation Hard X-ray Telescope Application,”
Proc. ASPE
, pp. 3184–1.
7.
Zeng
,
S.
, and
Blunt
,
L.
,
2014
, “
Experimental Investigation and Analytical Modelling of the Effects of Process Parameters on Material Removal Rate for Bonnet Polishing of Cobalt Chrome Alloy
,”
Precis. Eng.
,
38
, pp.
348
355
.10.1016/j.precisioneng.2013.11.005
8.
Cheung
,
C. F.
,
Li
,
H. F.
,
Lee
,
W. B.
,
To
,
S.
, and
Kong
,
L. B.
,
2007
, “
An Integrated Form Characterization Method for Measuring Ultra-Precision Freeform Surfaces
,”
Int. J. Mach. Tools Manuf.
,
47
, pp.
81
91
.10.1016/j.ijmachtools.2006.02.013
9.
Zeng
,
S.
,
Blunt
,
L.
, and
Jiang
,
X.
,
2012
, “
Material Removal Investigation in Bonnet Polishing of CoCr Alloy
,”
Proceedings of The Queen's Diamond Jubilee Computing and Engineering Annual Researcher's Conference
, pp.
25
30
.
10.
Jain
,
V. K.
, and
Sidpara
,
A.
,
2012
, “
Nanofinishing of Freeform Surfaces of Prosthetic Knee Joint Implant
,”
Proc. Inst. Mech. Eng., Part B
,
J. Eng. Manuf.
,
226
(11), pp. 1833–1846.
11.
Fisher
,
J.
,
Dowson
,
D.
,
Hamdzah
,
H.
, and
Lee
,
H. L.
,
1994
, “
The Effect of Sliding Velocity on the Friction and Wear of UHMWPE for Use in Total Artificial Joints
,”
Wear
,
175
(
1-2
), pp.
219
225
.10.1016/0043-1648(94)90185-6
12.
Ingham
,
E.
, and
Fisher
,
J.
,
2005
, “
The Role of Macrophages in Osteolysis of Total Joint Replacement
,”
Biomaterials
,
26
(
11
), pp.
1271
1286
.10.1016/j.biomaterials.2004.04.035
13.
Borruto
,
A.
,
Marrelli
,
L.
, and
Palma
,
F.
,
2005
, “
The Difference of Material Wettability as Critical Factor in the Choice of a Tribological Prosthetic Coupling Without Debris Release
,”
Tribol. Lett.
,
20
(
1
), pp.
1
10
.10.1007/s11249-005-7787-z
14.
Borruto
,
A.
,
Crivellone
,
G.
, and
Marani
,
F.
,
1998
, “
Influence of Surface Wettability on Friction and Wear Tests
,”
Wear
,
222
, pp.
57
65
.10.1016/S0043-1648(98)00256-7
15.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
, pp.
988
994
.10.1021/ie50320a024
16.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.10.1039/tf9444000546
17.
Kubiak
,
K. J.
,
Wilson
,
M. C. T.
,
Mathia
,
T. G.
,
Carval
Ph.
,
2011
, “
Wettability Versus Roughness of Engineering Surfaces
,”
Wear
,
271
, pp.
523
528
.10.1016/j.wear.2010.03.029
18.
Encinas
,
N.
,
Pantoja
,
M.
,
Abenojar
,
J.
, and
Martinez
,
M. A.
,
2010
, “
Control of Wettability of Polymers by Surface Roughness Modification
,”
J. Adhes. Sci. Technol.
,
24
, pp.
1869
1883
.10.1163/016942410X511042
19.
Bhattacharya
,
S.
,
Datta
,
A.
,
Berg
,
J.
, and
Gangopadhyay
,
S.
,
2005
, “
Studies on Surface Wettability of Poly(Dimethyl) Siloxane (PDMS) and Glass Under Oxygen-Plasma Treatment and Correlation With Bond Strength
,”
J. Microelectromech. Syst.
,
14
(
3
), pp.
590
597
.10.1109/JMEMS.2005.844746
20.
Chen
,
Y.
,
Duh
,
J.
, and
Chiou
,
B.
,
2000
, “
The Effect of Substrate Surface Roughness on the Wettability of Sn-Bi Solders
,”
J. Mater. Sci.: Mater. Electron.
,
11
, pp.
279
283
.10.1023/A:1008917530144
21.
Hallab
,
N.
,
Bundy
,
K.
,
O'Connor
,
K.
,
Moses
,
R.
, and
Jacobs
,
J.
,
2001
, “
Evaluation of Metallic and Polymeric Biomaterial Surface Energy and Surface Roughness Characteristics for Directed Cell Adhesion
,”
Tissue Eng.
,
7
(
1
), pp.
55
71
.10.1089/107632700300003297
22.
Singh
,
R.
,
Melkote
,
S.
, and
Hashimoto
,
F.
,
2005
, “
Frictional Response of Precision Finished Surfaces in Pure Sliding
,”
Wear
,
258
, pp.
1500
1509
.10.1016/j.wear.2004.03.071
23.
Malshe
,
A.
,
Rajurkar
,
K.
,
Samant
,
A.
,
Hansen
,
H. N.
,
Bapat
,
S.
, and
Jiang
,
W.
,
2013
, “
Bioinspired Functional Surfaces for Advanced Applications
,”
CIRP Ann. - Manuf. Technol.
,
62
(
2
), pp.
607
628
.10.1016/j.cirp.2013.05.008
24.
Mezghani
,
S.
,
Demirci
,
I.
,
Zahouani
,
H.
, and
El Mansori
,
M.
,
2012
, “
The Effect of Groove Texture Patterns on Piston-Ring Pack Friction
,”
Precis. Eng.
,
36
, pp.
210
217
.10.1016/j.precisioneng.2011.09.008
25.
Patil
,
M. G.
,
Chandra
,
K.
, and
Misra
,
P. S.
,
2011
, “
Magnetic Abrasive Finishing—A Review
,”
Adv. Mater. Res.
,
418-420
, pp.
1577
1581
.10.4028/www.scientific.net/AMR.418-420.1577
26.
Kim
,
J.
, and
Noh
,
I.
,
2007
, “
Magnetic Polishing of Three Dimensional Die and Mold Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
33
(
1
), pp.
18
23
.10.1007/s00170-007-1018-8
27.
Ji
,
S. M.
,
Xu
,
Y. M.
,
Chen
,
G. D.
, and
Jin
,
M. S.
,
2011
, “
Comparative Study of Magnetic Abrasive Finishing in Free-Form Surface Based on Different Polishing Head
,”
Mater. Sci. Forum
,
675-677
, pp.
593
596
.10.4028/www.scientific.net/MSF.675-677.593
28.
Jain
,
V. K.
,
Singh
,
D. K.
, and
Raghuram
,
V.
,
2008
, “
Analysis of Performance of Pulsating Flexible Magnetic Abrasive Brush (PFMAB)
,”
Mach. Sci. Technol.
,
12
(
1
), pp.
53
76
.10.1080/10910340701883538
29.
Yamaguchi
,
H.
, and
Shinmura
,
T.
,
1999
, “
Study of the Surface Modification Resulting From an Internal Magnetic Abrasive Finishing Process
,”
Wear
,
225-229
, pp.
246
255
.10.1016/S0043-1648(99)00013-7
30.
Sato
,
T.
,
Yamaguchi
,
H.
,
Shinmura
,
T.
, and
Okazaki
,
T.
,
2007
, “
Study of Internal Magnetic Field Assisted Finishing for Copper Tubes With MRF (Magneto-rheological Fluid)-Based Slurry
,”
Key Eng. Mater.
,
329
, pp.
249
254
.10.4028/www.scientific.net/KEM.329.249
31.
Shinmura
,
T.
,
Takazawa
,
K.
,
Hatano
,
E.
, and
Matsunaga
,
M.
,
1990
, “
Study on Magnetic Abrasive Finishing
,”
Ann. CIRP
,
39
(
1
), pp.
325
328
.10.1016/S0007-8506(07)61064-6
32.
Graziano
,
A.
,
Ganguly
,
V.
,
Bullard
,
J.
,
Yamaguchi
,
H.
, and
Schmitz
,
T.
,
2012
, “
Characteristics of Cobalt Chromium Alloy Surfaces Finished Using Magnetic Abrasive Finishing
,”
Proceedings of the ASME 2012 International Manufacturing Science and Engineering Conference
, pp.
1
8
.
33.
Kubiak
,
K. J.
,
Wilson
,
M. C. T.
,
Mathia
,
T. G.
, and
Carval
,
Ph.
,
2009
, “
Wettability versus Roughness of Engineering Surfaces
,”
Proceedings of 12th International Conference on Metrology and Properties of Engineering Surfaces
, pp.
1
5
.
You do not currently have access to this content.