A thermal model estimating workpiece temperature in orthogonal turn-milling compound machining for the case with noneccentricity between rotation axes of workpiece and tool has been established in this paper. Milling tool and machining history were discretized into infinitesimal elements of equal size to deal with complicated cutter geometry and intermittent cutting procedure. The geometries of milling tool and workpiece were analyzed to calculate the instantaneous chip thickness, axial depth of cut, and angles of cutting entry and exit. Heat source during cutting process was considered as instantaneous moving rectangular heat source and heat conducting function in infinite solid thermal conductivity was developed. Experiments measuring cutting force and workpiece temperature were launched to test validity of this model and figure out the importance of effects those factors have on workpiece temperature from variance analysis of orthogonal experiment results. Furthermore, simulations to calculate peak temperature of workpiece were carried out by this model with relevant machining parameters and the results matched conclusions from experiment well.

References

1.
Ginting
,
A.
, and
Nouari
,
M.
,
2009
, “
Surface Integrity of Dry Machined Titanium Alloys
,”
Int. J. Mach. Tools Manuf.
,
49
(
3–4
), pp.
325
332
.10.1016/j.ijmachtools.2008.10.011
2.
Jaeger
,
J. C.
,
1942
, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
J. R. Soc. New South Wales
,
76
, pp.
203
224
.
3.
Hahn
,
R. S.
,
1956
, “
The Relation Between Grinding Conditions and Thermal Damage in the Workpiece
,”
Trans. ASME
,
78
, pp.
807
812
.
4.
Dawson
,
P. R.
, and
Malkin
,
S.
,
1984
, “
Inclined Moving Heat Source Model for Calculating Metal Cutting Temperatures
,”
J. Eng. Ind.
,
106
(
3
), pp.
179
186
.10.1115/1.3185930
5.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2000
, “
Thermal Modeling of the Metal Cutting Process: Part I—Temperature Rise Distribution Due to Shear Plane Heat Source
,”
Int. J. Mech. Sci.
,
42
(
9
), pp.
1715
1752
.10.1016/S0020-7403(99)00070-3
6.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2001
, “
Thermal Modeling of the Metal Cutting Process—Part II: Temperature Rise Distribution Due to Frictional Heat Source at the Tool–Chip Interface
,”
Int. J. Mech. Sci.
,
43
(
1
), pp.
57
88
.10.1016/S0020-7403(99)00104-6
7.
Karpat
,
Y.
, and
Ozel
,
T.
,
2006
, “
Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process—Part I: Predictions of Tool Forces, Stresses, and Temperature Distributions
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
435
444
.10.1115/1.2162590
8.
Kang
,
Z.
,
Ji
,
X.
, and
Zhang
,
X.
,
2011
, “
Theoretical Modeling of Cutting Temperature Distribution by Considering the Material Thermal Properties as Functions of Temperature
,”
ASME International Manufacturing Science and Engineering Conference
, Corvallis, OR, June 13–17, Vol.
1
, pp.
225
232
.
9.
Tai
,
B. L.
,
Stephenson
,
D. A.
, and
Shih
,
A. J.
,
2012
, “
An Inverse Heat Transfer Method for Determining Workpiece Temperature in Minimum Quantity Lubrication Deep Hole Drilling
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021006
.10.1115/1.4005794
10.
Tai
,
B. L.
,
Stephenson
,
D. A.
, and
Shih
,
A. J.
,
2013
, “
Workpiece Temperature During Deep-Hole Drilling of Cast Iron Using High Air Pressure Minimum Quantity Lubrication
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031019
.10.1115/1.4024036
11.
Lefebvre
,
A.
,
Lanzetta
,
F.
, and
Lipinski
,
P.
,
2012
, “
Measurement of Grinding Temperatures Using a Foil/Workpiece Thermocouple
,”
Int. J. Mach. Tools Manuf.
,
58
, pp.
1
10
.10.1016/j.ijmachtools.2012.02.006
12.
Li
,
L. W.
,
Li
,
B.
,
Li
,
X. C.
, and
Ehmann
,
K. F.
,
2013
, “
Experimental Investigation of Hard Turning Mechanisms by PCBN Tooling Embedded Micro Thin Film Thermocouples
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041012
.10.1115/1.4023722
13.
Agarwal
,
S.
, and
Venkateswara
,
R. P.
,
2013
, “
Predictive Modeling of Force and Power Based on a New Analytical Undeformed Chip Thickness Model in Ceramic Grinding
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
68
78
.10.1016/j.ijmachtools.2012.10.006
14.
Werschmoeller
,
D.
,
Li
,
X. C.
, and
Ehmann
,
K.
,
2012
, “
Measurement of Transient Tool-Internal Temperature Fields During Hard Turning by Insert-Embedded Thin Film Sensors
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061004
.10.1115/1.4007621
15.
Shu
,
S. R.
,
Cheng
,
K.
,
Ding
,
H.
, and
Chen
,
S. J.
,
2013
, “
An Innovative Method to Measure the Cutting Temperature in Process by Using an Internally Cooled Smart Cutting Tool
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061018
.10.1115/1.4025742
16.
Sato
,
M.
,
Tamura
,
N.
, and
Tanaka
,
H.
,
2011
, “
Temperature Variation in the Cutting Tool in End Milling
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021005
.10.1115/1.4003615
17.
Kuo
,
H. Y.
,
Meyer
,
K.
,
Lindle
,
R.
, and
Ni
,
J.
,
2012
, “
Estimation of Milling Tool Temperature Considering Coolant and Wear
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031002
.10.1115/1.4005799
18.
Richardson
,
D. J.
,
Keavey
,
M. A.
, and
Dailami
,
F.
,
2006
, “
Modeling of Cutting Induced Workpiece Temperatures for Dry Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
10
), pp.
1139
1145
.10.1016/j.ijmachtools.2005.08.008
19.
Lin
,
S.
,
Peng
,
F. Y.
,
Wen
,
J.
,
Liu
,
Y. Z.
, and
Yan
,
R.
,
2013
, “
An Investigation of Workpiece Temperature Variation in End Milling Considering Flank Rubbing Effect
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
71
86
.10.1016/j.ijmachtools.2013.05.010
20.
Dang
,
J. W.
,
Zhang
,
W. H.
,
Yang
,
Y.
, and
Wan
,
M.
,
2010
, “
Cutting Force Modeling for Flat End Milling Including Bottom Edge Cutting Effect
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
986
997
.10.1016/j.ijmachtools.2010.07.004
21.
Wei
,
Z. C.
,
Wang
,
M. J.
,
Zhu
,
J. N.
, and
Gu
,
L. Y.
,
2011
, “
Cutting Force Prediction in Ball End Milling of Sculptured Surface With Z-Level Contouring Tool Path
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
428
432
.10.1016/j.ijmachtools.2011.01.011
22.
Kaymakci
,
M.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Unified Cutting Force Model for Turning, Boring, Drilling and Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
54–55
, pp.
34
45
.10.1016/j.ijmachtools.2011.12.008
23.
Shaw
,
M. C.
,
2005
,
Metal Cutting Principles
,
Oxford University
,
Oxford, UK
.
24.
Altintas
,
Y.
,
2000
,
Manufacturing Automation
,
Cambridge University
,
Cambridge, UK.
25.
Hou
,
Z. B.
,
He
,
S. J.
, and
Li
,
S. X.
,
1984
,
Conduction of Heat in Solids
,
Shanghai Scientific and Technical Publishers
,
Shanghai
.
26.
Armarego
,
E. J. A.
, and
Whitfield
,
R. C.
,
1985
, “
Computer Based Modeling of Popular Machining Operations for Force and Power Predictions
,”
Ann. CIRP
,
34
(
1
), pp.
65
69
.10.1016/S0007-8506(07)61725-9
27.
Moufki
,
A.
,
Dudzinski
,
D.
,
Molinari
,
A.
, and
Rausch
,
M.
,
2000
, “
Thermo-Mechanical Modeling of Oblique Cutting Forces and Chip Flow Prediction
,”
Int. J. Mech. Sci.
,
42
(
6
), pp.
1205
1232
.10.1016/S0020-7403(99)00036-3
28.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Cutting Process
,”
ASME J. Appl. Mech.
,
67
, pp.
168
175
.
29.
Venuvinod
,
P. K.
, and
Lau
,
W. S.
,
1986
, “
Estimation of Rake Temperatures in Free Oblique Cutting
,”
Int. J. Mach. Tool Des. Res.
,
26
(
1
), pp.
1
14
.10.1016/0020-7357(86)90191-5
You do not currently have access to this content.