Laser scribing is an important manufacturing process used to reduce photocurrent and resistance losses and increase solar cell efficiency through the formation of serial interconnections in large-area solar cells. High-quality scribing is crucial since the main impediment to large-scale adoption of solar power is its high-production cost (price-per-watt) compared to competing energy sources such as wind and fossil fuels. In recent years, the use of glass-side laser scribing processes has led to increased scribe quality and solar cell efficiencies; however, defects introduced during the process such as thermal effect, microcracks, film delamination, and removal uncleanliness keep the modules from reaching their theoretical efficiencies. Moreover, limited numerical work has been performed in predicting thin-film laser removal processes. In this study, a nanosecond (ns) laser with a wavelength at 532 nm is employed for pattern 2 (P2) scribing on CdTe (cadmium telluride) based thin-film solar cells. The film removal mechanism and defects caused by laser-induced micro-explosion process are studied. The relationship between those defects, removal geometry, laser fluences, and scribing speeds are also investigated. Thermal and mechanical numerical models are developed to analyze the laser-induced spatiotemporal temperature and pressure responsible for film removal. The simulation can well-predict the film removal geometries, transparent conducting oxide (TCO) layer thermal damage, generation of microcracks, film delamination, and residual materials. The characterization of removal qualities will enable the process optimization and design required to enhance solar module efficiency.

References

1.
Dhere
,
R. G.
,
Bonnet-Eymard
,
M.
,
Charlet
,
E.
,
Peter
,
E.
,
Duenow
,
J. N.
,
Li
,
J. V.
,
Kuciauskas
,
D.
, and
Gessert
,
T. A.
,
2011
, “
CdTe Solar Cell With Industrial Al:ZnO on Soda-Lime Glass
,”
Thin Solid Films
,
519
(
21
), pp.
7142
7145
.
2.
Luque
,
A.
, and
Hegedus
,
S.
,
2003
,
Handbook of Photovoltaic Science and Engineering
,
Wiley
,
Chichester, UK
.
3.
Booth
,
H.
,
2010
, “
Laser Processing in Industrial Solar Module Manufacturing
,”
J. Laser Micro/Nanoeng.
,
5
(
3
), pp.
183
191
.
4.
Compaan
,
A. D.
, and
Matulionis
,
S. N.
,
2000
, “
Laser Scribing of Polycrystalline Thin Films
,”
Opt. Lasers Eng.
,
34
(
1
), pp.
15
45
.
5.
Murison
,
R.
,
Dunsky
,
C.
,
Rekow
,
M.
,
Dinkel
,
C.
,
Pern
,
J.
,
Mansfield
,
L.
,
Panarello
,
T.
, and
Nikumb
,
S.
,
2010
, “
CIGS P1, P2 and P3 Laser Scribing With an Innovative Fiber Laser
,” 35th
IEEE
Photovoltaic Specialists Conference
, Honolulu, HI, June 20–25, pp.
179
184
.
6.
Bovatsek
,
J.
,
Tamhankar
,
A.
,
Patel
,
R. S.
,
Bulgakova
,
N. M.
, and
Bonse
,
J.
,
2010
, “
Thin Film Removal Mechanisms in ns-Laser Processing of Photovoltaic Materials
,”
Thin Solid Films
,
518
(
10
), pp.
2897
2904
.
7.
Dunsky
,
C. M.
, and
Colville
,
F.
,
2008
, “
Scribing Thin-Film Solar Panels
,” Industrial Laser Solutions for Manufacturing.
8.
Gecys
,
P.
, and
Raciukaitis
,
G.
,
2010
, “
Scribing of a-Si Thin Film Solar Cells With Picoseconds Laser
,”
Eur. Phys. J. Appl. Phys.
,
51
(
3
), p.
33209
.
9.
Wang
,
W.
,
Wang
,
K. D.
,
Jiang
,
G. D.
,
Mei
,
X. S.
, and
Yang
,
C. J.
,
2010
, “
Comparison of Femtosecond Laser-Induced Front- and Rear-Side Ablation of Films
,”
Proc. Inst. Mech. Eng., Part B
,
225
(
4
), pp.
520
527
.
10.
Beyer
,
S.
,
Tonrnari
,
V.
, and
Gornicki
,
D.
,
2003
, “
Comparison of Laser Induced Front- and Rear Side Ablation
,”
Proc. SPIE
,
5063
, pp.
202
207
.
11.
Sano
,
T.
,
Yamada
,
H.
,
Nakayama
,
T.
, and
Miyamoto
,
I.
,
2002
, “
Laser Induced Rear Ablation of Metal Thin Films
,”
Proc. SPIE
,
4426
, pp.
70
73
.
12.
Matylitsky
,
V. V.
,
Huber
,
H.
, and
Kopf
,
D.
,
2011
, “
Selective Removal of Transparent Conductive Oxide Layers With Ultrashort Laser Pulses: Front- vs. Back-Side Ablation
,”
International Congress on Applications of Lasers and Electro-Optics
, pp.
1022
1027
.
13.
Wang
,
H.
,
Hsu
,
S.
,
Tan
,
H.
,
Yao
,
Y. L.
,
Chen
,
H.
, and
Azer
,
M.
,
2013
, “
Predictive Modeling for Glass-Side Laser Scribing of Thin Film Photovoltaic Cells
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051004
.
14.
Shinohara
,
W.
,
Shima
,
M.
,
Taira
,
S.
,
Uchihashi
,
K.
, and
Terakawa
,
A.
,
2006
, “
Applications of Laser Patterning to Fabricate Innovative Thin-Film Silicon Solar Cells
,”
Proc. SPIE
,
6107
, p.
61070J
.
15.
Kontgers
,
M.
,
Kunze
,
I.
,
Kajari-Schroder
,
S.
,
Breitenmoser
,
X.
, and
Bjorneklett
,
B.
,
2010
, “
Quantifying the Risk of Power Loss in PV Modules Due to Micro Cracks
,”
25th European Photovoltaic Solar Energy Conference
,
Valencia, Spain
, pp.
3745
3752
.
16.
Tull
,
B. R.
,
Carey
,
J. E.
,
Mazur
,
E.
,
McDonald
,
J. P.
, and
Yalisove
,
S. M.
,
2006
, “
Silicon Surface Morphologies After Femtosecond Laser Irradiation
,”
MRS Bull.
,
31
(
8
), pp.
626
633
.
17.
Wang
,
H.
,
Lusquiños
,
F.
, and
Yao
,
Y. L.
,
2012
, “
Effect of Hydrogen on Surface Texturing and Crystallization of a-Si:H Thin Film Irradiated by Excimer Laser
,”
Appl. Phys. A
,
107
(
2
), pp.
307
320
.
18.
Wang
,
H.
,
Kongsuwan
,
P.
,
Satoh
,
G.
, and
Yao
,
Y. L.
,
2012
, “
Femtosecond Laser-Induced Simultaneous Surface Texturing and Crystallization of a-Si:H Thin Film: Absorption and Crystallinity
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031006
.
19.
Borrajo
,
J.
,
Vetter
,
M.
, and
Andreu
,
J.
,
2009
, “
Laser Scribing of Very Large 2.6 m × 2.2 m a-Si:H Thin Film Photovoltaic Modules
,”
2009 Spanish Conference on Electron Devices
,
Santiago de Compostela, Spain
, pp.
402
405
.
20.
Lauzurica
,
S.
,
Garcia-Ballesteros
,
J. J.
,
Colina
,
M.
,
Sanchez-Aniorte
,
I.
, and
Molpeceres
,
C.
,
2011
, “
Selective Ablation With UV Lasers of a-Si:H Thin Film Solar Cells in Direct Scribing Configuration
,”
Appl. Surf. Sci.
,
257
(
12
), pp.
5230
5236
.
21.
Tomaoki
,
S.
,
Kaneuchi
,
Y.
,
Kakui
,
M.
,
Baird
,
B.
,
Paudel
,
N.
, and
Wieland
,
K.
,
2010
, “
Development of Wide Operational Range Fiber Laser for Processing Thin Film Photovoltaic Panels
,”
29th International Congress on Applications of Laser & Electro-Optics
,
Anaheim, CA
, p.
M1306
.
22.
Acciani
,
G.
,
Falcone
,
O.
, and
Vergura
,
S.
,
2010
, “
Defects in Poly-Silicon and Amorphous Silicon Solar Cells
,”
International Conference on Renewable Energy and Power Quality
,
Spain
.
23.
Golovan
,
L.
,
Kashkarov
,
P.
, and
Timoshenko
,
V.
,
1996
, “
Laser-Induced Melting and Defect Formation in Cadmium Telluride
,”
Laser Phys.
,
6
(
5
), pp.
925
927
.
24.
Emel'yanov
,
V. I.
, and
Kashkarov
,
P. K.
,
1992
, “
Laser-Induced Defect Formation in Semiconductors
,”
Appl. Phys. A
,
55
(
2
), pp.
161
166
.
25.
Addession
,
F. L.
, and
Johnson
,
J. N.
,
1990
, “
A Constitutive Model for the Dynamic Response of Brittle Materials
,”
J. Appl. Phys.
,
67
(
7
), pp.
3275
3286
.
26.
Holmquist
,
T. J.
, and
Johnson
,
G. R.
,
1994
, “
An Improved Computational Constitutive Model for Brittle Materials
,”
AIP Conf. Proc.
309
(
1
), pp.
981
984
.
27.
Holmquist
,
T. J.
, and
Johnson
,
G. R.
,
2005
, “
Characterization and Evaluation of Silicon Carbide for High-Velocity Impact
,”
J. Appl. Phys.
,
97
(
9
), p.
093502
.
28.
Hodges
,
D. R.
,
Palekis
,
V.
,
Bhandaru
,
S.
,
Singh
,
K.
,
Morel
,
D.
,
Stefanakos
,
E. K.
, and
Ferekides
,
C. S.
,
2009
, “
Mechanical Properties and Adhesion of CdTe/CdS Thin Film Solar Cells Deposited on Flexible Foil Substrates
,”
Material Research Society Symposium Proceedings
, Vol.
1165
,
Paper No
. 1165-M02-09.
29.
Vere
,
A. W.
,
Cole
,
S.
, and
Williams
,
D. J.
,
1983
, “
The Origins of Twinning in CdTe
,”
J. Electron. Mater.
,
12
(
3
), pp.
551
561
.
30.
Hughes
,
G. M.
,
Smith
,
G. E.
,
Flewitt
,
P. E. J.
, and
Crocker
,
A. G.
,
2007
, “
The Brittle Fracture of Polycrystalline Zinc
,”
Proc. R. Soc. A
,
463
, pp.
2129
2151
.
31.
Hai
,
S.
, and
Tadmor
,
E. B.
,
2003
, “
Deformation Twinning at Aluminum Crack Tips
,”
Acta Mater.
,
51
(
1
), pp.
117
131
.
You do not currently have access to this content.