The objective of this work is to identify failure modes and detect the onset of process anomalies in additive manufacturing (AM) processes, specifically focusing on fused filament fabrication (FFF). We accomplish this objective using advanced Bayesian nonparametric analysis of in situ heterogeneous sensor data. Experiments are conducted on a desktop FFF machine instrumented with a heterogeneous sensor array including thermocouples, accelerometers, an infrared (IR) temperature sensor, and a real-time miniature video borescope. FFF process failures are detected online using the nonparametric Bayesian Dirichlet process (DP) mixture model and evidence theory (ET) based on the experimentally acquired sensor data. This sensor data-driven defect detection approach facilitates real-time identification and correction of FFF process drifts with an accuracy and precision approaching 85% (average F-score). In comparison, the F-score from existing approaches, such as probabilistic neural networks (PNN), naïve Bayesian clustering, support vector machines (SVM), and quadratic discriminant analysis (QDA), was in the range of 55–75%.

References

1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
New York
.
2.
Bourell
,
D.
,
Beaman
,
J.
,
Leu
,
M.
, and
Rosen
,
D.
,
2009
, “
A Brief History of Additive Manufacturing and the Roadmap for Additive Manufacturing: Looking Back and Looking Ahead
,”
U.S.–Turkey Workshop on Rapid Technologies
, pp.
5
11
.
3.
Kruth
,
J.-P.
,
Leu
,
M.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann.-Manuf. Technol.
,
47
(
2
), pp.
525
540
.
4.
Levy
,
G. N.
,
Schindel
,
R.
, and
Kruth
,
J.-P.
,
2003
, “
Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives
,”
CIRP Ann.-Manuf. Technol.
,
52
(
2
), pp.
589
609
.
5.
Turner
,
B. N.
,
Strong
,
R.
, and
Gold
,
S. A.
,
2014
, “
A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling
,”
Rapid Prototyping J.
,
20
(
3
), pp.
192
204
.
6.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
7.
Khoshnevis
,
B.
,
Hwang
,
D.
,
Yao
,
K.-T.
, and
Yeh
,
Z.
,
2006
, “
Mega-Scale Fabrication by Contour Crafting
,”
Int. J. Ind. Syst. Eng.
,
1
(
3
), pp.
301
320
.
8.
Khoshnevis
,
B.
,
Bodiford
,
M. P.
,
Burks
,
K. H.
,
Ethridge
,
E.
,
Tucker
,
D.
,
Kim
,
W.
,
Toutanji
,
H.
, and
Fiske
,
M. R.
,
2014
, “
Lunar Contour Crafting–A Novel Technique for ISRU Based Habitat Development
,”
American Institute of Aeronautics and Astronautics Conference
,
Reno, NV
, pp. 1–13.
9.
Cooper
,
K. P.
,
2002
, “
Layered Manufacturing: Challenges and Opportunities
,”
Materials Research Society Symposia
, Fall 2002 Meeting, Vol. 758, pp.
23
34
.
10.
Scott
,
J.
,
Gupta
,
N.
,
Weber
,
C. L.
,
Newsome
,
S.
,
Wohlers
,
T.
, and
Caffrey
,
T.
,
2012
,
Additive Manufacturing: Status and Opportunities
,
Science and Technology Policy Institute
,
Washington, DC
, pp.
1
29
.
11.
2013
,
Roundtable Forum on Additive Manufacturing: Opportunities and Constraints
,
Royal Academy of Engineering
,
London, UK
.
12.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
13.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
14.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
.
15.
Energetics Incorporated,
2013
,
Measurement Science Roadmap for Metal-Based Additive Manufacturing
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
16.
Mahesh
,
M.
,
Wong
,
Y.
,
Fuh
,
J.
, and
Loh
,
H.
,
2004
, “
Benchmarking for Comparative Evaluation of RP Systems and Processes
,”
Rapid Prototyping J.
,
10
(
2
), pp.
123
135
.
17.
Peng
,
A. H.
, and
Wang
,
Z. M.
,
2010
, “
Researches Into Influence of Process Parameters on FDM Parts Precision
,”
Appl. Mech. Mater.
,
34
, pp.
338
343
.
18.
Wang
,
T.-M.
,
Xi
,
J.-T.
, and
Jin
,
Y.
,
2007
, “
A Model Research for Prototype Warp Deformation in the FDM Process
,”
Int. J. Adv. Manuf. Technol.
,
33
(
11–12
), pp.
1087
1096
.
19.
Anitha
,
R.
,
Arunachalam
,
S.
, and
Radhakrishnan
,
P.
,
2001
, “
Critical Parameters Influencing the Quality of Prototypes in Fused Deposition Modelling
,”
J. Mater. Process. Technol.
,
118
(
1–3
), pp.
385
388
.
20.
Armillotta
,
A.
,
2006
, “
Assessment of Surface Quality on Textured FDM Prototypes
,”
Rapid Prototyping J.
,
12
(
1
), pp.
35
41
.
21.
Agarwala
,
M. K.
,
Jamalabad
,
V. R.
,
Langrana
,
N. A.
,
Safari
,
A.
,
Whalen
,
P. J.
, and
Danforth
,
S. C.
,
1996
, “
Structural Quality of Parts Processed by Fused Deposition
,”
Rapid Prototyping J.
,
2
(
4
), pp.
4
19
.
22.
Pei
,
E.
,
Campbell
,
R. I.
, and
de Beer
,
D.
,
2011
, “
Entry-Level RP Machines: How Well Can They Cope With Geometric Complexity?
,”
Assem. Autom.
,
31
(
2
), pp.
153
160
.
23.
Tong
,
K.
,
Joshi
,
S.
, and
Lehtihet
,
E. A.
,
2008
, “
Error Compensation for Fused Deposition Modeling (FDM) Machine by Correcting Slice Files
,”
Rapid Prototyping J.
,
14
(
1
), pp.
4
14
.
24.
Qiu
,
D.
, and
Langrana
,
N. A.
,
2002
, “
Void Eliminating Toolpath for Extrusion-Based Multi-Material Layered Manufacturing
,”
Rapid Prototyping J.
,
8
(
1
), pp.
38
45
.
25.
Lin
,
F.
,
Sun
,
W.
, and
Yan
,
Y.
,
2001
, “
Optimization With Minimum Process Error for Layered Manufacturing Fabrication
,”
Rapid Prototyping J.
,
7
(
2
), pp.
73
82
.
26.
Xu
,
F.
,
Loh
,
H.
, and
Wong
,
Y.
,
1999
, “
Considerations and Selection of Optimal Orientation for Different Rapid Prototyping Systems
,”
Rapid Prototyping J.
,
5
(
2
), pp.
54
60
.
27.
Hossain
,
M. S.
,
Espalin
,
D.
,
Ramos
,
J.
,
Perez
,
M.
, and
Wicker
,
R.
,
2014
, “
Improved Mechanical Properties of Fused Deposition Modeling-Manufactured Parts Through Build Parameter Modifications
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061002
.
28.
Sabourin
,
E.
,
Houser
,
S. A.
, and
Bøhn
,
J. H.
,
1997
, “
Accurate Exterior, Fast Interior Layered Manufacturing
,”
Rapid Prototyping J.
,
3
(
2
), pp.
44
52
.
29.
Ziemian
,
C.
, and
Crawn
,
P.
, III
,
2001
, “
Computer Aided Decision Support for Fused Deposition Modeling
,”
Rapid Prototyping J.
,
7
(
3
), pp.
138
147
.
30.
Panhalkar
,
N.
,
Paul
,
R.
, and
Anand
,
S.
,
2014
, “
Increasing Part Accuracy in Additive Manufacturing Processes Using a k–d Tree Based Clustered Adaptive Layering
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061017
.
31.
Bukkapatnam
,
S.
, and
Clark
,
B.
,
2007
, “
Dynamic Modeling and Monitoring of Contour Crafting—An Extrusion-Based Layered Manufacturing Process
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
135
142
.
32.
Fang
,
T.
,
Bakhadyrov
,
I.
,
Jafari
,
M. A.
, and
Alpan
,
G.
,
1998
, “
Online Detection of Defects in Layered Manufacturing
,”
International Conference on Robotics and Automation
,
IEEE
, Leuven, May 16–20, pp.
254
259
.
33.
Fang
,
T.
,
Jafari
,
M. A.
,
Danforth
,
S. C.
, and
Safari
,
A.
,
2003
, “
Signature Analysis and Defect Detection in Layered Manufacturing of Ceramic Sensors and Actuators
,”
Mach. Vision Appl.
,
15
(
2
), pp.
63
75
.
34.
Cheng
,
Y.
, and
Jafari
,
M. A.
,
2008
, “
Vission-Based Online Process Control in Manufacturing Applications
,”
IEEE Trans. Auto. Sci. Eng.
,
5
, pp.
140
153
.
35.
Dempster
,
A. P.
,
Laird
,
N. M.
, and
Rubin
,
D. B.
,
1977
, “
Maximum Likelihood From Incomplete Data Via the EM Algorithm
,”
J. R. Stat. Soc. Ser. B (Methodol.)
,
39
(
1
) pp.
1
38
.
36.
Escobar
,
M. D.
,
1994
, “
Estimating Normal Means With a Dirichlet Process Prior
,”
J. Am. Stat. Assoc.
,
89
(
425
), pp.
268
277
.
37.
Weheba
,
G.
, and
Sanchez-Marsa
,
A.
,
2006
, “
Using Response Surface Methodology to Optimize the Stereolithography Process
,”
Rapid Prototyping J.
,
12
(
2
), pp.
72
77
.
38.
Kruth
,
J.-P.
,
Vandenbroucke
,
B.
,
Vaerenbergh
,
V. J.
, and
Mercelis
,
P.
,
2005
, “
Benchmarking of Different SLS/SLM Processes as Rapid Manufacturing Techniques
,”
International Conference on Polymer and Moulds Innovation (PMI)
, Gent, Belgium, pp. 1–7.
39.
Moylan
,
S.
,
Slotwinski
,
J.
,
Cooke
,
A.
,
Jurrens
,
K.
, and
Donmez
,
M. A.
,
2012
,
Proposal for a Standardized Test Artifact for Additive Manufacturing Machines and Processes
,
National Institute of Standards and Technology (NIST)
,
Gaithersburg, MD
.
40.
Cooke
,
A.
, and
Soons
,
J.
,
2010
, “
Variability in the Geometric Accuracy of Additively Manufactured Test Parts
,”
21st Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
1
12
.
41.
Vasudevarao
,
B.
,
Natarajan
,
D. P.
,
Henderson
,
M.
, and
Razdan
,
A.
,
2000
, “
Sensitivity of RP Surface Finish to Process Parameter Variation
,”
Proceedings of the Solid Freeform Fabrication
, pp.
251
258
.
42.
Schmidt
,
S. R.
, and
Launsby
,
R. G.
,
1989
,
Understanding Industrial Designed Experiments
,
Air Academy Press
,
Colorado Springs, CO
.
43.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton, NJ
.
44.
Ferguson
,
T. S.
,
1983
, “
Bayesian Density Estimation by Mixtures of Normal Distributions
,”
Recent Adv. Stat.
,
24
, pp.
287
302
.
45.
Rasmussen
,
C. E.
,
2000
, “
The Infinite Gaussian Mixture Model
,”
Adv. Neural Inf. Process. Syst.
,
12
(
5.2
), pp.
554
560
.
46.
Beyca
,
O. F.
,
2013
, “
Sensor-Based Real-Time Process Monitoring for Ultra-Precision Manufacturing Processes With Nonlinearity and Nonstationarity
,” Ph.D. dissertation, Oklahoma State University, Stillwater, OK.
47.
Basir
,
O.
, and
Yuan
,
X.
,
2007
, “
Engine Fault Diagnosis Based on Multi-Sensor Information Fusion Using Dempster–Shafer Evidence Theory
,”
Inf. Fusion
,
8
(
4
), pp.
379
386
.
48.
Yang
,
B.-S.
, and
Kim
,
K. J.
,
2006
, “
Application of Dempster–Shafer Theory in Fault Diagnosis of Induction Motors Using Vibration and Current Signals
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
403
420
.
49.
Parikh
,
C. R.
,
Pont
,
M. J.
, and
Barrie Jones
,
N.
,
2001
, “
Application of Dempster–Shafer Theory in Condition Monitoring Applications: A Case Study
,”
Pattern Recognit. Lett.
,
22
(
6–7
), pp.
777
785
.
50.
McCulloch
,
W. S.
, and
Pitts
,
W.
,
1943
, “
A Logical Calculus of the Ideas Immanent in Nervous Activity
,”
Bull. Math. Biophys.
,
5
(
4
), pp.
115
133
.
51.
Powers
,
D. M.
,
2011
, “
Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation
,” Technical Report No. SIE-07-001.
52.
John
,
G. H.
, and
Langley
,
P.
,
1995
, “
Estimating Continuous Distributions in Bayesian Classifiers
,”
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
,
Morgan Kaufmann Publishers
,
San Francisco, CA
, pp.
338
345
.
53.
Lachenbruch
,
P. A.
,
1975
, “
Discriminant Analysis
,” “
Encyclopedia of Statistical Sciences
,” John Wiley & Sons, Inc., New York.
54.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.
55.
Specht
,
D. F.
,
1990
, “
Probabilistic Neural Networks
,”
Neural Networks
,
3
(
1
), pp.
109
118
.
56.
Hagan
,
M. T.
,
Demuth
,
H. B.
, and
Beale
,
M.
,
1997
,
Neural Network Design
,
PWS Publishing
,
Boston, MA
.
You do not currently have access to this content.