With the implementation of more stringent emissions standards, ultrahigh strength steel has been increasingly used in vehicle body to reduce the carbon emissions, but softening in the heat-affected zone is one of the most serious issues faced with in welding of this steel. In this paper, a finite element model (FEM) was developed to estimate temperature distribution in laser welding of lapped martensitic steels M1500 considering the effect of interface. Three methods to characterize the effect of interface have been adopted. The comparison result shows that the method using two groups of contact elements with birth and death options could accurately characterize the thermal contact conductance properties of the interface before and after welding, respectively. Based on the simulated temperature–time curve, a carbon diffusion model was then developed to estimate the martensite tempering transformation in the softening zone. Maximum softening degree and location of the softening zone were estimated and validated by hardness measurement experiments.

References

1.
Hong
,
S. H.
,
Sung
,
S. J.
, and
Pan
,
J.
,
2015
, “
Failure Mode and Fatigue Behavior of Dissimilar Friction Stir Spot Welds in Lap-Shear Specimens of Transformation Induced Plasticity Steel (Trip780) and Hot Stamped Boron Steel (HSBS) Sheets
,”
ASME. J. Manuf. Sci. Eng.
,
137
(
5
), p. 051023.
2.
Korkolis
,
Y. P.
,
Carlson
,
B. E.
,
Li
,
J.
, and
Chu
,
E.
,
2015
, “
Special Issue: Forming and Joining of Lightweight and Multi-Material Systems
,”
ASME. J. Manuf. Sci. Eng.
,
137
(
5
), p. 050201.
3.
Zhang
,
Y.
,
Li
,
Q.
,
Xu
,
L.
, and
Duan
,
L.
,
2014
, “
A Mechanistic Study on the Inhibition of Zinc Behavior During Laser Welding of Galvanized Steel
,”
ASME. J. Manuf. Sci. Eng.
,
137
(
1
), p.
011011
.
4.
Shi
,
S.
, and
Westgate
,
S.
,
2008
, “
Laser Welding of Ultra-High Strength Steels for Automotive Applications
,”
3rd Pacific International Conference on Applications of Lasers and Optics
, PICALO, Beijing, pp.
134
139
.
5.
Yang
,
S.
,
Carlson
,
B.
, and
Kovacevic
,
R.
,
2011
, “
Laser Welding of High-Strength Galvanized Steels in a Gap-Free Lap Joint Configuration Under Different Shielding Conditions
,”
Weld. J.
,
90
(
1
), pp.
8s
18s
.
6.
Brandal
,
G.
,
Yao
,
Y. L.
, and
Naveed
,
S.
,
2015
, “
Biocompatibility and Corrosion Response of Laser Joined NiTi to Stainless Steel Wires
,”
ASME. J. Manuf. Sci. Eng.
,
137
(
3
), p.
031015
.
7.
Alshaer
,
A. W.
,
Li
,
L. L.
, and
Mistry
,
A. A.
,
2015
, “
Understanding the Effect of Heat Input and Sheet Gap on Porosity Formation in Fillet Edge and Flange Couch Laser Welding of AC-170PX Aluminum Alloy for Automotive Component Manufacture
,”
ASME. J. Manuf. Sci. Eng.
,
137
(
2
), p.
021011
.
8.
Satoh
,
G.
,
Qiu
,
C.
,
Naveed
,
S.
, and
Yao
,
Y. L.
,
2015
, “
Strength and Phase Identification of Autogenous Laser Brazed Dissimilar Metal Microjoints
,”
ASME. J. Manuf. Sci. Eng.
,
137
(
1
), p. 011012.
9.
Bailey
,
N. S.
,
Tan
,
W.
, and
Shin
,
Y. C.
,
2015
, “
A Parametric Study on Laser Welding of Magnesium Alloy AZ31 by a Fiber Laser
,”
ASME. J. Manuf. Sci. Eng.
,
137
(
4
), p.
041003
.
10.
Kim
,
C.-H.
,
Choi
,
J.-K.
,
Kang
,
M.-J.
, and
Park
,
Y.-D.
,
2010
, “
A Study on the CO2 Laser Welding Characteristics of High Strength Steel up to 1500 MPa for Automotive Application
,”
J. Achiev. Mater. Manuf. Eng.
,
39
(
1
), pp.
79
86
.
11.
Gu
,
Z.
,
Yu
,
S.
,
Han
,
L.
,
Meng
,
J.
,
Xu
,
H.
, and
Zhang
,
Z.
,
2011
, “
Microstructures and Properties of Ultra-High Strength Steel by Laser Welding
,”
ISIJ Int.
,
51
(
7
), pp.
1126
1131
.
12.
Li
,
X.
,
Wang
,
L.
,
Yang
,
L.
,
Wang
,
J.
, and
Li
,
K.
,
2014
, “
Modeling of Temperature Field and Pool Formation During Linear Laser Welding of DP1000 Steel
,”
J. Mater. Process. Technol.
,
214
(
9
), pp.
1844
1851
.
13.
Xu
,
W.
,
Westerbaan
,
D.
,
Nayak
,
S. S.
,
Chen
,
D. L.
,
Goodwin
,
F.
,
Biro
,
E.
, and
Zhou
,
Y.
,
2012
, “
Microstructure and Fatigue Performance of Single and Multiple Linear Fiber Laser Welded DP980 Dual-Phase Steel
,”
Mater. Sci. Eng. A
,
553
, pp.
51
58
.
14.
Farrokhi
,
F.
,
Siltanen
,
J.
, and
Salminen
,
A.
, “
Fiber Laser Welding of Direct-Quenched Ultrahigh Strength Steels: Evaluation of Hardness, Tensile Strength, and Toughness Properties at Subzero Temperatures
,”
ASME. J. Manuf. Sci. Eng.
,
137
(
6
), p. 061012.
15.
Xia
,
M.
,
Biro
,
E.
,
Tian
,
Z.
, and
Zhou
,
Y. N.
,
2008
, “
Effects of Heat Input and Martensite on HAZ Softening in Laser Welding of Dual Phase Steels
,”
ISIJ Int.
,
48
(
6
), pp.
809
814
.
16.
Zhao
,
Y. Y.
,
Zhang
,
Y. S.
, and
Hu
,
W.
,
2013
, “
Effect of Welding Speed on Microstructure, Hardness and Tensile Properties in Laser Welding of Advanced High Strength Steel
,”
Sci. Technol. Weld. Joining
,
18
(
7
), pp.
581
590
.
17.
Hanhold
,
B.
,
Babu
,
S. S.
,
Cola
,
G.
,
Ream
,
S.
,
Nagy
,
B.
, and
Victor
,
B.
,
2013
, “
Investigation of HAZ Softening in Laser Welding of AHS/High Hardness Steels
,”
9th International Conference on Trends in Welding Research
, Chicago, IL, June 4–8, pp.
19
25
.
18.
Biro
,
E.
,
McDermid
,
J. R.
,
Embury
,
J. D.
, and
Zhou
,
Y.
,
2010
, “
Softening Kinetics in the Subcritical Heat-Affected Zone of Dual-Phase Steel Welds
,”
Metall. Mater. Trans. A
,
41
(
9
), pp.
2348
2356
.
19.
Biro
,
E.
,
Vignier
,
S.
,
Kaczynski
,
C.
,
McDermid
,
J. R.
,
Lucas
,
E.
,
Embury
,
J. D.
, and
Zhou
,
Y. N.
,
2013
, “
Predicting Transient Softening in the Sub-Critical Heat-Affected Zone of Dual-Phase and Martensitic Steel Welds
,”
ISIJ Int.
,
53
(
1
), pp.
110
118
.
20.
Biro
,
E.
,
McDermid
,
J. R.
,
Vignier
,
S.
, and
Norman Zhou
,
Y.
,
2014
, “
Decoupling of the Softening Processes During Rapid Tempering of a Martensitic Steel
,”
Mater. Sci. Eng. A
,
615
, pp.
395
404
.
21.
Ion
,
J. C.
,
Easterling
,
K. E.
, and
Ashby
,
M. F.
,
1984
, “
A Second Report on Diagrams of Microstructure and Hardness for Heat-Affected Zones in Welds
,”
Acta Metall.
,
32
(
11
), pp.
1949
1955
,1957–1962.
22.
Melvin
,
A.
,
1939
, “
Kinetics of Phase Change. I: General Theory
,”
J. Chem. Phys.
,
7
(
12
), pp.
1103
1112
.
23.
Ma
,
J.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2012
, “
Finite-Element Thermal Analysis of Laser Welding of Galvanized High-Strength Steel in a Zero-Gap Lap Joint Configuration and Its Experimental Verification
,”
Mater. Des.
,
36
, pp.
348
358
.
24.
Lakhkar
,
R. S.
,
Shin
,
Y. C.
, and
Krane
,
M. J. M.
,
2008
, “
Predictive Modeling of Multi-Track Laser Hardening of AISI 4140 Steel
,”
Mater. Sci. Eng. A
,
480
(
1–2
), pp.
209
217
.
25.
Fortunato
,
A.
,
Ascari
,
A.
,
Liverani
,
E.
,
Orazi
,
L.
, and
Cuccolini
,
G.
,
2013
, “
A Comprehensive Model for Laser Hardening of Carbon Steels
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061002
.
26.
Marimuthu
,
S.
,
Eghlio
,
R. M.
,
Pinkerton
,
A. J.
, and
Li
,
L.
,
2013
, “
Coupled Computational Fluid Dynamic and Finite Element Multiphase Modeling of Laser Weld Bead Geometry Formation and Joint Strengths
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p. 011004.
27.
Rahman Chukkan
,
J.
,
Vasudevan
,
M.
,
Muthukumaran
,
S.
,
Ravi Kumar
,
R.
, and
Chandrasekhar
,
N.
,
2015
, “
Simulation of Laser Butt Welding of AISI 316L Stainless Steel Sheet Using Various Heat Sources and Experimental Validation
,”
J. Mater. Process. Technol.
,
219
, pp.
48
59
.
28.
Moraitis
,
G. A.
, and
Labeas
,
G. N.
,
2008
, “
Residual Stress and Distortion Calculation of Laser Beam Welding for Aluminum Lap Joints
,”
J. Mater. Process. Technol.
,
198
(
1–3
), pp.
260
269
.
29.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.
30.
Chen
,
J.
,
Zhang
,
W.
,
Feng
,
Z.
, and
Cai
,
W.
,
2014
, “
Determination of Thermal Contact Conductance Between Thin Metal Sheets of Battery Tabs
,”
Int. J. Heat Mass Transfer
,
69
, pp.
473
480
.
31.
Tang
,
B. T.
,
Wang
,
Q. L.
,
Bruschi
,
S. S.
,
Ghiotti
,
A. A.
, and
Bariani
,
P. F.
,
2014
, “
Influence of Temperature and Deformation on Phase Transformation and Vickers Hardness in Tailored Tempering Process: Numerical and Experimental Verifications
,”
ASME. J. Manuf. Sci. Eng.
,
136
(
5
), p. 051018.
32.
Kongsuwan
,
P.
,
Grant
,
B.
, and
Yao
,
Y. L.
,
2015
, “
Laser Induced Porosity and Crystallinity Modification of a Bioactive Glass Coating on Titanium Substrates
,”
ASME. J. Manuf. Sci. Eng.
,
137
(
3
), p. 031004.
33.
ANSYS
,
2011
, “
ANSYS User's Manual. Version 14
,” ANSYS, Inc., Canonsburg, PA.
34.
Frewin
,
M. R.
, and
Scott
,
D. A.
,
1999
, “
Finite Element Model of Pulsed Laser Welding
,”
Weld. J.
,
78
(
1
), pp.
15-s
22-s
.
35.
Belhadj
,
A.
,
Bessrour
,
J.
,
Masse
,
J. E.
,
Bouhafs
,
M.
, and
Barrallier
,
L.
,
2010
, “
Finite Element Simulation of Magnesium Alloys Laser Beam Welding
,”
J. Mater. Process. Technol.
,
210
(
9
), pp.
1131
1137
.
36.
SSAB DATA SHEET
, “
Docol M Cold Reduced Martensitic Steels
,” SSAB, Stockholm, Sweden.
37.
JMatPro
,
2013
, “
JMatPro User's Guide
,” Sente Software, UK.
38.
Bonifaz
,
E. A.
,
2000
, “
Finite Element Analysis of Heat Flow in Single-Pass Arc Welds
,”
Weld. J.
,
79
(
5
), pp.
121
125
.
39.
Cooper
,
M. G.
,
Mikić
,
B. B.
, and
Yovanovich
,
M. M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
279
300
.
40.
Bi
,
D.
,
Chen
,
H.
, and
Ye
,
T.
,
2012
, “
Influences of Temperature and Contact Pressure on Thermal Contact Resistance at Interfaces at Cryogenic Temperatures
,”
Cryogenics
,
52
(
7–9
), pp.
403
409
.
41.
Mikic
,
B. B.
,
1974
, “
Thermal Contact Conductance: Theoretical Considerations
,”
Int. J. Heat Mass Transfer
,
17
(
2
), pp.
205
214
.
42.
Bahrami
,
M.
,
Culham
,
J. R.
,
Yananovich
,
M. M.
, and
Schneider
,
G. E.
,
2006
, “
Review of Thermal Joint Resistance Models for Nonconforming Rough Surfaces
,”
ASME Appl. Mech. Rev.
,
59
(
1–6
), pp.
1
11
.
43.
Fieberg
,
C.
, and
Kneer
,
R.
,
2008
, “
Determination of Thermal Contact Resistance From Transient Temperature Measurements
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1017
1023
.
44.
IPG Laser GmbH
,
2008
. “
Ytterbium Laser System YLR-1500- S2T User Guide
,” IPG Laser GmbH, Beijing.
45.
Wen
,
C. Y.
,
Lin
,
Y. S.
, and
Lu
,
C. H.
,
2009
, “
Experimental Study of Clamping Effects on the Performances of a Single Proton Exchange Membrane Fuel Cell and a 10-Cell Stack
,”
J. Power Sources
,
192
(
2
), pp.
475
485
.
46.
MathWorks
,
2013
, “
MATLAB Documentation
,” MathWorks, Beijing.
You do not currently have access to this content.