Alumina (Al2O3) is an extremely hard and brittle ceramic that is usually used as an abrasive or a cutting tool insert in manufacturing. However, its growing applications in industrial products make it necessary to conduct a study of the machinability of alumina themselves with a cost-effective and flexible method, rather than conventional diamond grinding or laser-assisted processing methods. In this paper, polycrystalline diamond tools are used to investigate the machining of nonporous pure alumina by applying an inclined ultrasonic elliptical vibration cutting (IUEVC) method. First, a theoretical analysis is presented to study the effects of the machining parameters on cutting performances during raster cutting procedures from the prospective of the material removal rate (MRR), tool-chip contact area, cutting edge angle, etc. Then, experiments are carried out to investigate the cutting forces and the areal surface roughness (Sa) in connection with the theoretically established relationships. The results show that the cutting forces are remarkably reduced, by up to more than 90%, and that the machined surface finish is also improved compared with conventional methods.

References

1.
Tan
,
Y.
,
Yang
,
D.
, and
Sheng
,
Y.
,
2008
, “
Study of Polycrystalline Al 2 O 3 Machining Cracks Using Discrete Element Method
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
975
982
.
2.
Dong
,
X.
, and
Shin
,
Y. C.
,
2014
, “
Multi-Scale Finite Element Modeling of Alumina Ceramics Undergoing Laser-Assisted Machining
,”
ASME J. Manuf. Sci. Eng.
,
138
(1), p.
011004
.
3.
Choi
,
G. S.
, and
Choi
,
G. H.
,
1997
, “
Process Analysis and Monitoring in Abrasive Water Jet Machining of Alumina Ceramics
,”
Int. J. Mach. Tools Manuf.
,
37
(
3
), pp.
295
307
.
4.
Bhattacharyya
,
B.
,
Doloi
,
B.
, and
Sorkhel
,
S.
,
1999
, “
Experimental Investigations Into Electrochemical Discharge Machining (ECDM) of Non-Conductive Ceramic Materials
,”
J. Mater. Process. Technol.
,
95
(
1
), pp.
145
154
.
5.
Samant
,
A. N.
, and
Dahotre
,
N. B.
,
2008
, “
Computational Predictions in Single-Dimensional Laser Machining of Alumina
,”
Int. J. Mach. Tools Manuf.
,
48
(
12
), pp.
1345
1353
.
6.
Barnes
,
C.
,
Shrotriya
,
P.
, and
Molian
,
P.
,
2007
, “
Water-Assisted Laser Thermal Shock Machining of Alumina
,”
Int. J. Mach. Tools Manuf.
,
47
(
12
), pp.
1864
1874
.
7.
Tsai
,
C.-H.
, and
Chen
,
H.-W.
,
2003
, “
Laser Milling of Cavity in Ceramic Substrate by Fracture-Machining Element Technique
,”
J. Mater. Process. Technol.
,
136
(
1
), pp.
158
165
.
8.
Wang
,
B.
,
Liu
,
Z.
,
Su
,
G.
, and
Ai
,
X.
,
2015
, “
Brittle Removal Mechanism of Ductile Materials With Ultrahigh-Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061002
.
9.
Zhu
,
W.-L.
,
Yang
,
S.
,
Ju
,
B.-F.
,
Jiang
,
J.
, and
Sun
,
A.
,
2015
, “
On-Machine Measurement of a Slow Slide Servo Diamond-Machined 3D Microstructure With a Curved Substrate
,”
Meas. Sci. Technol.
,
26
(
7
), p.
075003
.
10.
Zhu
,
W.-L.
,
Yang
,
S.
,
Ju
,
B.-F.
,
Jiang
,
J.
, and
Sun
,
A.
,
2015
, “
Scanning Tunneling Microscopy-Based On-Machine Measurement for Diamond Fly Cutting of Micro-Structured Surfaces
,”
Precis. Eng.
,
43
, pp. 308–314.
11.
Venkatachalam
,
S.
,
Fergani
,
O.
,
Li
,
X.
,
Yang
,
J. G.
,
Chiang
,
K.-N.
, and
Liang
,
S. Y.
,
2015
, “
Microstructure Effects on Cutting Forces and Flow Stress in Ultra-Precision Machining of Polycrystalline Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021020
.
12.
Uehara
,
K.
, and
Takeshita
,
H.
,
1986
, “
Cutting Ceramics With a Technique of Hot Machining
,”
CIRP Ann.-Manuf. Technol.
,
35
(
1
), pp.
55
58
.
13.
Chang
,
C.-W.
, and
Kuo
,
C.-P.
,
2007
, “
Evaluation of Surface Roughness in Laser-Assisted Machining of Aluminum Oxide Ceramics With Taguchi Method
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
141
147
.
14.
Chang
,
C.-W.
, and
Kuo
,
C.-P.
,
2007
, “
An Investigation of Laser-Assisted Machining of Al2O3 Ceramics Planing
,”
Int. J. Mach. Tools Manuf.
,
47
(
3
), pp.
452
461
.
15.
Zhong
,
Z. W.
, and
Hung
,
N. P.
,
2002
, “
Grinding of Alumina/Aluminum Composites
,”
J. Mater. Process. Technol.
,
123
(
1
), pp.
13
17
.
16.
Mladenovic
,
G.
,
Bojanic
,
P.
,
Tanovic
,
L.
, and
Klimenko
,
S.
,
2015
, “
Experimental Investigation of Microcutting Mechanisms in Oxide Ceramic CM332 Grinding
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
034502
.
17.
Linke
,
B. S.
,
2015
, “
Review on Grinding Tool Wear With Regard to Sustainability
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
060801
.
18.
Chryssolouris
,
G.
,
Anifantis
,
N.
, and
Karagiannis
,
S.
,
1997
, “
Laser Assisted Machining: An Overview
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4
B), pp.
766
769
.
19.
Zhu
,
Z.
,
To
,
S.
,
Xiao
,
G.
,
Ehmann
,
K. F.
, and
Zhang
,
G.
,
2015
, “
Rotary Spatial Vibration-Assisted Diamond Cutting of Brittle Materials
,”
Preci. Eng.
,
44
, pp. 211–219.
20.
James
,
S.
, and
Sundaram
,
M. M.
,
2015
, “
Modeling of Material Removal Rate in Vibration Assisted Nano Impact-Machining by Loose Abrasives
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021008
.
21.
Zhang
,
J.
,
Suzuki
,
N.
,
Wang
,
Y.
, and
Shamoto
,
E.
,
2015
, “
Ultra-Precision Nano-Structure Fabrication by Amplitude Control Sculpturing Method in Elliptical Vibration Cutting
,”
Precis. Eng.
,
39
, pp.
86
99
.
22.
Nath
,
C.
, and
Rahman
,
M.
,
2008
, “
Effect of Machining Parameters in Ultrasonic Vibration Cutting
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
965
974
.
23.
Kumabe
,
J.
,
Fuchizawa
,
K.
,
Soutome
,
T.
, and
Nishimoto
,
Y.
,
1989
, “
Ultrasonic Superposition Vibration Cutting of Ceramics
,”
Precis. Eng.
,
11
(
2
), pp.
71
77
.
24.
Amini
,
S.
,
Khosrojerdi
,
M. R.
,
Nosouhi
,
R.
, and
Behbahani
,
S.
,
2014
, “
An Experimental Investigation on the Machinability of Al2O3 in Vibration-Assisted Turning Using PCD Tool
,”
Mater. Manuf. Processes
,
29
(
3
), pp.
331
336
.
25.
Shamoto
,
E.
, and
Moriwaki
,
T.
,
1994
, “
Study on Elliptical Vibration Cutting
,”
CIRP Ann.-Manuf. Technol.
,
43
(
1
), pp.
35
38
.
26.
Brehl
,
D.
, and
Dow
,
T.
,
2008
, “
Review of Vibration-Assisted Machining
,”
Precis. Eng.
,
32
(
3
), pp.
153
172
.
27.
Nath
,
C.
,
Rahman
,
M.
, and
Neo
,
K.
,
2009
, “
A Study on Ultrasonic Elliptical Vibration Cutting of Tungsten Carbide
,”
J. Mater. Process. Technol.
,
209
(
9
), pp.
4459
4464
.
28.
Nath
,
C.
,
Rahman
,
M.
, and
Neo
,
K. S.
,
2009
, “
A Study on the Effect of Tool Nose Radius in Ultrasonic Elliptical Vibration Cutting of Tungsten Carbide
,”
J. Mater. Process. Technol.
,
209
(
17
), pp.
5830
5836
.
29.
Zhang
,
J.
,
Suzuki
,
N.
,
Wang
,
Y.
, and
Shamoto
,
E.
,
2014
, “
Fundamental Investigation of Ultra-Precision Ductile Machining of Tungsten Carbide by Applying Elliptical Vibration Cutting With Single Crystal Diamond
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2644
2659
.
30.
Guo
,
P.
, and
Ehmann
,
K. F.
,
2013
, “
Development of a Tertiary Motion Generator for Elliptical Vibration Texturing
,”
Precis. Eng.
,
37
(
2
), pp.
364
371
.
31.
Guo
,
P.
,
Lu
,
Y.
,
Pei
,
P.
, and
Ehmann
,
K. F.
,
2014
, “
Fast Generation of Micro-Channels on Cylindrical Surfaces by Elliptical Vibration Texturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041008
.
32.
Nath
,
C.
,
Rahman
,
M.
, and
Neo
,
K. S.
,
2009
, “
Machinability Study of Tungsten Carbide Using PCD Tools Under Ultrasonic Elliptical Vibration Cutting
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1089
1095
.
33.
Shamoto
,
E.
,
Morimoto
,
Y.
, and
Moriwaki
,
T.
,
1999
, “
Elliptical Vibration Cutting (2nd Report)-Study on Effects of Vibration Conditions
,”
J.-Jpn. Soc. Precis. Eng.
,
65
(
3
), pp.
411
417
.
34.
Zhang
,
X.
,
Kumar
,
A. S.
,
Rahman
,
M.
,
Nath
,
C.
, and
Liu
,
K.
,
2012
, “
An Analytical Force Model for Orthogonal Elliptical Vibration Cutting Technique
,”
J. Manuf. Processes
,
14
(
3
), pp.
378
387
.
35.
Longbottom
,
J.
, and
Lanham
,
J.
,
2006
, “
A Review of Research Related to Salomon's Hypothesis on Cutting Speeds and Temperatures
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1740
1747
.
36.
Zhang
,
C.
,
Ehmann
,
K.
, and
Li
,
Y.
,
2015
, “
Analysis of Cutting Forces in the Ultrasonic Elliptical Vibration-Assisted Micro-Groove Turning Process
,”
Int. J. Adv. Manuf. Technol.
,
78
(
1–4
), pp.
139
152
.
37.
Peng
,
F.
,
Liu
,
Y.
,
Lin
,
S.
,
Yan
,
R.
,
Yang
,
S.
, and
Li
,
B.
,
2015
, “
An Investigation of Workpiece Temperature in Orthogonal Turn-Milling Compound Machining
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011014
.
38.
Che
,
D.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2015
, “
Analytical Modeling of Heat Transfer in Polycrystalline Diamond Compact Cutters in Rock Turning Processes
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031005
.
39.
Cerniway
,
M. A.
,
2002
, “
Elliptical Diamond Milling: Kinematics, Force and Tool Wear
,”
M.S. thesis
.
40.
Chen
,
W.
,
2000
, “
Cutting Forces and Surface Finish When Machining Medium Hardness Steel Using CBN Tools
,”
Int. J. Mach. Tools Manuf.
,
40
(
3
), pp.
455
466
.
41.
Vyas
,
A.
, and
Shaw
,
M.
,
1999
, “
Mechanics of Saw-Tooth Chip Formation in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
163
172
.
42.
Nath
,
C.
,
Rahman
,
M.
, and
Neo
,
K. S.
,
2011
, “
Modeling of the Effect of Machining Parameters on Maximum Thickness of Cut in Ultrasonic Elliptical Vibration Cutting
,”
ASME J. Manuf. Sci. Eng.
,
133
(
1
), p.
011007
.
43.
Zhang
,
X.
,
Kumar
,
A. S.
,
Rahman
,
M.
,
Nath
,
C.
, and
Liu
,
K.
,
2011
, “
Experimental Study on Ultrasonic Elliptical Vibration Cutting of Hardened Steel Using PCD Tools
,”
J. Mater. Process. Technol.
,
211
(
11
), pp.
1701
1709
.
44.
Moriwaki
,
T.
,
Shamoto
,
E.
, and
Inoue
,
K.
,
1992
, “
Ultraprecision Ductile Cutting of Glass by Applying Ultrasonic Vibration
,”
CIRP Ann.-Manuf. Technol.
,
41
(
1
), pp.
141
144
.
45.
Frei
,
H.
, and
Grathwohl
,
G.
,
1993
, “
Microstructure and Strength of Advanced Ceramics After Machining
,”
Ceram. Int.
,
19
(
2
), pp.
93
104
.
You do not currently have access to this content.